{"id":"https://openalex.org/W4221120298","doi":"https://doi.org/10.1186/s12911-022-01821-w","title":"Solving the class imbalance problem using ensemble algorithm: application of screening for aortic dissection","display_name":"Solving the class imbalance problem using ensemble algorithm: application of screening for aortic dissection","publication_year":2022,"publication_date":"2022-03-28","ids":{"openalex":"https://openalex.org/W4221120298","doi":"https://doi.org/10.1186/s12911-022-01821-w","pmid":"https://pubmed.ncbi.nlm.nih.gov/35346181"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-022-01821-w","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-022-01821-w","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-022-01821-w","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067847743","display_name":"Lijue Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lijue Liu","raw_affiliation_strings":["School of Automation, Central South University, Changsha, 410083, Hunan, China"],"affiliations":[{"raw_affiliation_string":"School of Automation, Central South University, Changsha, 410083, Hunan, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072059836","display_name":"Xiaoyu Wu","orcid":"https://orcid.org/0000-0002-9779-4171"},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyu Wu","raw_affiliation_strings":["School of Automation, Central South University, Changsha, 410083, Hunan, China"],"affiliations":[{"raw_affiliation_string":"School of Automation, Central South University, Changsha, 410083, Hunan, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036755134","display_name":"Shihao Li","orcid":null},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shihao Li","raw_affiliation_strings":["School of Automation, Central South University, Changsha, 410083, Hunan, China"],"affiliations":[{"raw_affiliation_string":"School of Automation, Central South University, Changsha, 410083, Hunan, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100421503","display_name":"Yi Li","orcid":"https://orcid.org/0000-0002-3974-9794"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Li","raw_affiliation_strings":["Hunan Zixing Artificial Intelligence Research Institute, Changsha, 410007, Hunan, China"],"affiliations":[{"raw_affiliation_string":"Hunan Zixing Artificial Intelligence Research Institute, Changsha, 410007, Hunan, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045542907","display_name":"Shiyang Tan","orcid":null},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiyang Tan","raw_affiliation_strings":["School of Automation, Central South University, Changsha, 410083, Hunan, China"],"affiliations":[{"raw_affiliation_string":"School of Automation, Central South University, Changsha, 410083, Hunan, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078243766","display_name":"Yongping Bai","orcid":"https://orcid.org/0000-0002-6355-5842"},"institutions":[{"id":"https://openalex.org/I4210159865","display_name":"Xiangya Hospital Central South University","ror":"https://ror.org/05c1yfj14","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210159865"]},{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongping Bai","raw_affiliation_strings":["Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China"],"affiliations":[{"raw_affiliation_string":"Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China","institution_ids":["https://openalex.org/I4210159865","https://openalex.org/I139660479"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1570,"currency":"GBP","value_usd":1925,"provenance":"doaj"},"apc_paid":{"value":1570,"currency":"GBP","value_usd":1925,"provenance":"doaj"},"fwci":5.998,"has_fulltext":false,"cited_by_count":40,"citation_normalized_percentile":{"value":0.685436,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"22","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11653","display_name":"Financial Distress and Bankruptcy Prediction","score":0.986,"subfield":{"id":"https://openalex.org/subfields/1402","display_name":"Accounting"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10172","display_name":"Cardiac Valve Diseases and Treatments","score":0.9823,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.43640554}],"concepts":[{"id":"https://openalex.org/C136536468","wikidata":"https://www.wikidata.org/wiki/Q1225894","display_name":"Undersampling","level":2,"score":0.8687891},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5994689},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.5828108},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5768437},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5453708},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5150385},{"id":"https://openalex.org/C145642194","wikidata":"https://www.wikidata.org/wiki/Q870895","display_name":"Health informatics","level":3,"score":0.4761517},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.47042775},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.43640554},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.4356382},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37428558},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37069872},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.30325323},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.09670296},{"id":"https://openalex.org/C138816342","wikidata":"https://www.wikidata.org/wiki/Q189603","display_name":"Public health","level":2,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000784","descriptor_name":"Aneurysm, Dissecting","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000784","descriptor_name":"Aneurysm, Dissecting","qualifier_ui":"Q000175","qualifier_name":"diagnosis","is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012106","descriptor_name":"Research","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D060388","descriptor_name":"Support Vector Machine","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-022-01821-w","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-022-01821-w","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://doaj.org/article/cd358d41ec994486b10554f532a5f75c","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962101","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/35346181","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/s12911-022-01821-w","pdf_url":"https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-022-01821-w","source":{"id":"https://openalex.org/S107516304","display_name":"BMC Medical Informatics and Decision Making","issn_l":"1472-6947","issn":["1472-6947"],"is_oa":true,"is_in_doaj":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1965895350","https://openalex.org/W1969613001","https://openalex.org/W2006407062","https://openalex.org/W2044950413","https://openalex.org/W2062403468","https://openalex.org/W2096945460","https://openalex.org/W2101331317","https://openalex.org/W2104167780","https://openalex.org/W2119191234","https://openalex.org/W2121152275","https://openalex.org/W2130029590","https://openalex.org/W2136833846","https://openalex.org/W2166354664","https://openalex.org/W2169938898","https://openalex.org/W2170413589","https://openalex.org/W2279390508","https://openalex.org/W2423455227","https://openalex.org/W2590379360","https://openalex.org/W2724494584","https://openalex.org/W2734773959","https://openalex.org/W2750664433","https://openalex.org/W2766742395","https://openalex.org/W2803590506","https://openalex.org/W2806416578","https://openalex.org/W2915981391","https://openalex.org/W2916484180","https://openalex.org/W2917459525","https://openalex.org/W2923175165","https://openalex.org/W2928048063","https://openalex.org/W2945819472","https://openalex.org/W2973125122","https://openalex.org/W2989961964","https://openalex.org/W2999376617","https://openalex.org/W3000273732","https://openalex.org/W3006986403","https://openalex.org/W3011484826","https://openalex.org/W3013520191","https://openalex.org/W3017206470","https://openalex.org/W3091539625","https://openalex.org/W3094777985","https://openalex.org/W3107335993","https://openalex.org/W3133890039","https://openalex.org/W3174619174","https://openalex.org/W3183978973","https://openalex.org/W3192981021","https://openalex.org/W3194905393","https://openalex.org/W3213860882","https://openalex.org/W4230177137","https://openalex.org/W4252232941"],"related_works":["https://openalex.org/W80466363","https://openalex.org/W4389292014","https://openalex.org/W4249381695","https://openalex.org/W2887783772","https://openalex.org/W2534887053","https://openalex.org/W2394059563","https://openalex.org/W2109073422","https://openalex.org/W2101754595","https://openalex.org/W2080076470","https://openalex.org/W2026172757"],"abstract_inverted_index":{"Abstract":[0],"Background":[1],"Imbalance":[2],"between":[3],"positive":[4],"and":[5,52,76,115,140,147,222,242,247,279,306,328,348,362],"negative":[6],"outcomes,":[7],"a":[8,13,28,63,253,324,329,359,364,374],"so-called":[9],"class":[10,23,50,356],"imbalance,":[11],"is":[12],"problem":[14,85],"generally":[15],"found":[16],"in":[17,57,263,358],"medical":[18,360],"data.":[19,97],"Despite":[20],"various":[21],"studies,":[22],"imbalance":[24,51,92,164,357],"has":[25],"always":[26],"been":[27],"difficult":[29],"issue.":[30],"The":[31,229,269],"main":[32],"objective":[33],"of":[34,86,93,96,160,176,186,192,205,214,237,256,258,276,292,326,331,342,355],"this":[35,206,335],"study":[36],"was":[37,101,165,220],"to":[38,44,53,82,103,150,157,173,201,217,373],"find":[39],"an":[40,58,177,382],"effective":[41],"integrated":[42,141],"approach":[43],"address":[45],"the":[46,55,77,84,91,105,134,142,152,158,162,174,190,203,211,234,264,272,286,309,314,340,353],"problems":[47],"posed":[48],"by":[49,90],"validate":[54],"method":[56,79,172,320],"early":[59,178,383],"screening":[60,179,366,378],"model":[61,180,232,316,367],"for":[62,126,181,368,377,379],"rare":[64],"cardiovascular":[65],"disease":[66],"aortic":[67],"dissection":[68],"(AD).":[69],"Methods":[70],"Different":[71],"data-level":[72],"methods,":[73],"cost-sensitive":[74,318,346],"learning,":[75],"bagging":[78,148,349],"were":[80,199],"combined":[81],"solve":[83],"low":[87],"sensitivity":[88,236,257,325],"caused":[89],"two":[94,121,127],"classes":[95],"First,":[98],"feature":[99,343],"selection":[100],"applied":[102,170],"select":[104],"most":[106],"relevant":[107],"features":[108],"using":[109],"statistical":[110],"analysis,":[111],"including":[112],"significance":[113],"test":[114],"logistic":[116,293],"regression.":[117],"Then,":[118],"we":[119,169,337],"assigned":[120],"different":[122],"misclassification":[123],"cost":[124],"values":[125],"classes,":[128],"constructed":[129],"weak":[130,143],"classifiers":[131,144],"based":[132],"on":[133],"support":[135,376],"vector":[136],"machine":[137,288],"(SVM)":[138],"model,":[139],"with":[145,239,323],"undersampling":[146],"methods":[149,291,350],"build":[151],"final":[153],"strong":[154],"classifier.":[155],"Due":[156],"rarity":[159],"AD,":[161,369],"data":[163,185],"particularly":[166],"prominent.":[167],"Therefore,":[168],"our":[171],"construction":[175],"AD":[182,215,380],"disease.":[183],"Clinical":[184],"523,213":[187],"patients":[188,216,219],"from":[189],"Institute":[191],"Hypertension,":[193],"Xiangya":[194],"Hospital,":[195],"Central":[196],"South":[197],"University":[198],"used":[200],"verify":[202],"validity":[204],"method.":[207],"In":[208,334],"these":[209],"data,":[210],"sample":[212,224],"ratio":[213],"non-AD":[218],"1:65,":[221],"each":[223],"contained":[225],"71":[226],"features.":[227],"Results":[228],"proposed":[230],"ensemble":[231,274],"achieved":[233],"highest":[235],"82.8%,":[238],"training":[240],"time":[241],"specificity":[243,330],"reaching":[244],"56.4":[245],"s":[246],"71.9%":[248],"respectively.":[249],"Additionally,":[250],"it":[251],"obtained":[252],"small":[254],"variance":[255],"19.58":[259],"\u00d7":[260],"10":[261],"\u20133":[262],"seven-fold":[265],"cross":[266],"validation":[267],"experiment.":[268],"results":[270],"outperformed":[271],"common":[273],"algorithms":[275],"AdaBoost,":[277],"EasyEnsemble,":[278],"Random":[280],"Forest":[281],"(RF)":[282],"as":[283,285],"well":[284],"single":[287,311],"learning":[289,319,347],"(ML)":[290],"regression,":[294],"decision":[295,375],"tree,":[296],"k":[297],"nearest":[298],"neighbors":[299],"(KNN),":[300],"back":[301],"propagation":[302],"neural":[303],"network":[304],"(BP)":[305],"SVM.":[307],"Among":[308],"five":[310],"ML":[312],"algorithms,":[313],"SVM":[315],"after":[317],"performed":[321],"best":[322],"79.5%":[327],"73.4%.":[332],"Conclusions":[333],"study,":[336],"demonstrate":[338],"that":[339],"integration":[341],"selection,":[344],"undersampling,":[345],"can":[351],"overcome":[352],"challenge":[354],"dataset":[361],"develop":[363],"practical":[365],"which":[370],"could":[371],"lead":[372],"at":[381],"stage.":[384]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4221120298","counts_by_year":[{"year":2024,"cited_by_count":25},{"year":2023,"cited_by_count":15}],"updated_date":"2025-01-04T16:01:25.726845","created_date":"2022-04-03"}