{"id":"https://openalex.org/W1999907667","doi":"https://doi.org/10.1186/1471-2105-12-412","title":"Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features","display_name":"Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features","publication_year":2011,"publication_date":"2011-10-25","ids":{"openalex":"https://openalex.org/W1999907667","doi":"https://doi.org/10.1186/1471-2105-12-412","mag":"1999907667","pmid":"https://pubmed.ncbi.nlm.nih.gov/22026913","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/3224215"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/1471-2105-12-412","pdf_url":"https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-412","source":{"id":"https://openalex.org/S19032547","display_name":"BMC Bioinformatics","issn_l":"1471-2105","issn":["1471-2105"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-412","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091895880","display_name":"Ozgur Demir-Kavuk","orcid":null},"institutions":[{"id":"https://openalex.org/I75951250","display_name":"Freie Universit\u00e4t Berlin","ror":"https://ror.org/046ak2485","country_code":"DE","type":"funder","lineage":["https://openalex.org/I75951250"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ozgur Demir-Kavuk","raw_affiliation_strings":["Institute of Chemistry and Biochemistry; Freie Universit\u00e4t Berlin; Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Institute of Chemistry and Biochemistry; Freie Universit\u00e4t Berlin; Berlin, Germany","institution_ids":["https://openalex.org/I75951250"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101992610","display_name":"Mayumi Kamada","orcid":"https://orcid.org/0000-0002-2555-7345"},"institutions":[{"id":"https://openalex.org/I4399598384","display_name":"Kyoto University Institute for Chemical Research","ror":"https://ror.org/0349bbg69","country_code":null,"type":"funder","lineage":["https://openalex.org/I22299242","https://openalex.org/I4399598384"]},{"id":"https://openalex.org/I22299242","display_name":"Kyoto University","ror":"https://ror.org/02kpeqv85","country_code":"JP","type":"funder","lineage":["https://openalex.org/I22299242"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Mayumi Kamada","raw_affiliation_strings":["[Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan]"],"affiliations":[{"raw_affiliation_string":"[Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan]","institution_ids":["https://openalex.org/I4399598384","https://openalex.org/I22299242"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016330265","display_name":"Tatsuya Akutsu","orcid":"https://orcid.org/0000-0001-9763-797X"},"institutions":[{"id":"https://openalex.org/I4399598384","display_name":"Kyoto University Institute for Chemical Research","ror":"https://ror.org/0349bbg69","country_code":null,"type":"funder","lineage":["https://openalex.org/I22299242","https://openalex.org/I4399598384"]},{"id":"https://openalex.org/I22299242","display_name":"Kyoto University","ror":"https://ror.org/02kpeqv85","country_code":"JP","type":"funder","lineage":["https://openalex.org/I22299242"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tatsuya Akutsu","raw_affiliation_strings":["[Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan]"],"affiliations":[{"raw_affiliation_string":"[Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan]","institution_ids":["https://openalex.org/I4399598384","https://openalex.org/I22299242"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024132636","display_name":"Ernst\u2010Walter Knapp","orcid":null},"institutions":[{"id":"https://openalex.org/I75951250","display_name":"Freie Universit\u00e4t Berlin","ror":"https://ror.org/046ak2485","country_code":"DE","type":"funder","lineage":["https://openalex.org/I75951250"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ernst-Walter Knapp","raw_affiliation_strings":["Institute of Chemistry and Biochemistry; Freie Universit\u00e4t Berlin; Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Institute of Chemistry and Biochemistry; Freie Universit\u00e4t Berlin; Berlin, Germany","institution_ids":["https://openalex.org/I75951250"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1690,"currency":"GBP","value_usd":2072},"apc_paid":{"value":1690,"currency":"GBP","value_usd":2072},"fwci":1.383,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":98,"citation_normalized_percentile":{"value":0.999898,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"12","issue":"1","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.987,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10044","display_name":"Protein Structure and Dynamics","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.6318066},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.47806266}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70152617},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.6366203},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6331985},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.6318066},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6010279},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.54500574},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5112407},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.48522496},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.47806266},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.47069812},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.46569666},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4434585},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17455563},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.11257234},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D001185","descriptor_name":"Artificial Intelligence","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D019295","descriptor_name":"Computational Biology","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D000818","descriptor_name":"Animals","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D019295","descriptor_name":"Computational Biology","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D030541","descriptor_name":"Databases, Genetic","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D020407","descriptor_name":"Internet","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D025341","descriptor_name":"Principal Component Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012044","descriptor_name":"Regression Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/1471-2105-12-412","pdf_url":"https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-412","source":{"id":"https://openalex.org/S19032547","display_name":"BMC Bioinformatics","issn_l":"1471-2105","issn":["1471-2105"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224215","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/22026913","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1186/1471-2105-12-412","pdf_url":"https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-412","source":{"id":"https://openalex.org/S19032547","display_name":"BMC Bioinformatics","issn_l":"1471-2105","issn":["1471-2105"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320256","host_organization_name":"BioMed Central","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310320256"],"host_organization_lineage_names":["Springer Nature","BioMed Central"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1532759725","https://openalex.org/W1542491098","https://openalex.org/W1555148682","https://openalex.org/W1576347883","https://openalex.org/W1887132526","https://openalex.org/W1967195968","https://openalex.org/W1983599491","https://openalex.org/W2014725748","https://openalex.org/W2014731953","https://openalex.org/W2020925091","https://openalex.org/W2037263319","https://openalex.org/W2047028564","https://openalex.org/W2074682976","https://openalex.org/W2086565769","https://openalex.org/W2112148182","https://openalex.org/W2119862467","https://openalex.org/W2122825543","https://openalex.org/W2135046866","https://openalex.org/W2138145347","https://openalex.org/W2143210482","https://openalex.org/W2143908786","https://openalex.org/W2145473366","https://openalex.org/W2151967815","https://openalex.org/W2158714788","https://openalex.org/W2167904191","https://openalex.org/W2169484481","https://openalex.org/W2294798173","https://openalex.org/W2911964244","https://openalex.org/W3015571647","https://openalex.org/W4230238214","https://openalex.org/W4234698323","https://openalex.org/W4237171445","https://openalex.org/W4238306122","https://openalex.org/W4248415074","https://openalex.org/W4292402161","https://openalex.org/W4320800818","https://openalex.org/W88719000"],"related_works":["https://openalex.org/W4293525103","https://openalex.org/W4226413155","https://openalex.org/W3200179079","https://openalex.org/W3087493185","https://openalex.org/W2809701111","https://openalex.org/W2345184372","https://openalex.org/W2325374573","https://openalex.org/W2316780152","https://openalex.org/W2031329204","https://openalex.org/W1501378864"],"abstract_inverted_index":{"Abstract":[0],"Background":[1],"Machine":[2],"learning":[3,109],"methods":[4],"are":[5,70,101,115,124,137,270,273],"nowadays":[6],"used":[7,171,200],"for":[8,126,139,161,255,262],"many":[9,44,96,256],"biological":[10,140,258],"prediction":[11,27,220,259],"problems":[12,46,69,142,260],"involving":[13],"drugs,":[14],"ligands":[15],"or":[16],"polypeptide":[17],"segments":[18],"of":[19,35,49,113,152,185,219,234,268,277],"a":[20,26,29,63,88,210,226,265],"protein.":[21],"In":[22,95,166,195],"order":[23],"to":[24,59,86,106,175,192],"build":[25],"model":[28,224],"so":[30],"called":[31],"training":[32,51,147,159,263],"data":[33,52,134,148],"set":[34,53,149,184],"molecules":[36,123,144,269],"with":[37,91],"measured":[38],"target":[39,93],"properties":[40],"is":[41,54,76],"needed.":[42],"For":[43],"such":[45,73],"the":[47,50,67,92,146,156,167,177,182,196,202,206,232],"size":[48],"limited":[55],"as":[56],"measurements":[57],"have":[58],"be":[60,84,253],"performed":[61],"in":[62,145],"wet":[64],"lab.":[65],"Furthermore,":[66],"considered":[68,116],"often":[71],"complex,":[72],"that":[74],"it":[75,251],"not":[77],"clear":[78],"which":[79,136,214,230,272],"molecular":[80],"descriptors":[81,100,114],"(features)":[82],"may":[83,252],"suitable":[85],"establish":[87],"strong":[89],"correlation":[90],"property.":[94],"applications":[97],"all":[98,162,245],"available":[99,125],"used.":[102],"This":[103],"can":[104],"lead":[105],"difficult":[107],"machine":[108],"problems,":[110],"when":[111],"thousands":[112,151,276],"and":[117,150],"only":[118,201,264],"few":[119],"(e.g.":[120],"below":[121],"hundred)":[122],"training.":[127],"Results":[128],"The":[129,237],"CoEPrA":[130,247],"contest":[131],"provides":[132],"four":[133,163,246],"sets,":[135],"typical":[138],"regression":[141,164,248],"(few":[143],"descriptors).":[153],"We":[154],"applied":[155],"same":[157],"two-step":[158,239],"procedure":[160],"tasks.":[165,249],"first":[168],"stage,":[169,198],"we":[170,199],"optimized":[172],"L1":[173],"regularization":[174],"select":[176],"most":[178],"relevant":[179],"features.":[180],"Thus,":[181,250],"initial":[183],"more":[186],"than":[187],"6,000":[188],"features":[189,204],"was":[190],"reduced":[191],"about":[193],"50.":[194],"second":[197],"selected":[203],"from":[205],"preceding":[207],"stage":[208],"applying":[209],"milder":[211],"L2":[212],"regularization,":[213],"generally":[215],"yielded":[216],"further":[217],"improvement":[218],"performance.":[221],"Our":[222],"linear":[223],"employed":[225],"soft":[227],"loss":[228],"function":[229],"minimizes":[231],"influence":[233],"outliers.":[235],"Conclusions":[236],"proposed":[238],"method":[240],"showed":[241],"good":[242],"results":[243],"on":[244],"useful":[254],"other":[257],"where":[261],"small":[266],"number":[267],"available,":[271],"described":[274],"by":[275],"descriptors.":[278]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1999907667","counts_by_year":[{"year":2025,"cited_by_count":4},{"year":2024,"cited_by_count":28},{"year":2023,"cited_by_count":17},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":14},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":1}],"updated_date":"2025-04-04T01:20:14.877802","created_date":"2016-06-24"}