{"id":"https://openalex.org/W4285127812","doi":"https://doi.org/10.1166/jmihi.2022.3923","title":"Optimized Ensemble Machine Learning-Based Diabetic Retinopathy Grading Using Multiple Region of Interest Analysis and Bayesian Approach","display_name":"Optimized Ensemble Machine Learning-Based Diabetic Retinopathy Grading Using Multiple Region of Interest Analysis and Bayesian Approach","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4285127812","doi":"https://doi.org/10.1166/jmihi.2022.3923"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1166/jmihi.2022.3923","pdf_url":null,"source":{"id":"https://openalex.org/S2502047498","display_name":"Journal of Medical Imaging and Health Informatics","issn_l":"2156-7026","issn":["2156-7026","2156-7018"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310321646","host_organization_name":"American Scientific Publishers","host_organization_lineage":["https://openalex.org/P4310321646"],"host_organization_lineage_names":["American Scientific Publishers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031936000","display_name":"W. Nancy","orcid":null},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"W. Nancy","raw_affiliation_strings":["Department of Electronics and Communication Engineering, Jeppiaar Institute of Technology, Chennai 631604, India"],"affiliations":[{"raw_affiliation_string":"Department of Electronics and Communication Engineering, Jeppiaar Institute of Technology, Chennai 631604, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087319262","display_name":"A. Celine Kavida","orcid":null},"institutions":[{"id":"https://openalex.org/I1330855593","display_name":"Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology","ror":"https://ror.org/05bc5bx80","country_code":"IN","type":"education","lineage":["https://openalex.org/I1330855593"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"A. Celine Kavida","raw_affiliation_strings":["Department of Physics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India"],"affiliations":[{"raw_affiliation_string":"Department of Physics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India","institution_ids":["https://openalex.org/I1330855593"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.6,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.612982,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":"12","issue":"1","first_page":"35","last_page":"44"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10170","display_name":"Retinal Diseases and Treatments","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/2731","display_name":"Ophthalmology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/confusion-matrix","display_name":"Confusion matrix","score":0.5189045},{"id":"https://openalex.org/keywords/abnormality","display_name":"Abnormality","score":0.48086005},{"id":"https://openalex.org/keywords/adaboost","display_name":"AdaBoost","score":0.4714509},{"id":"https://openalex.org/keywords/grading","display_name":"Grading (engineering)","score":0.45530787}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75482553},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6775936},{"id":"https://openalex.org/C2779829184","wikidata":"https://www.wikidata.org/wiki/Q631361","display_name":"Diabetic retinopathy","level":3,"score":0.6592612},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.54472995},{"id":"https://openalex.org/C138602881","wikidata":"https://www.wikidata.org/wiki/Q2709591","display_name":"Confusion matrix","level":2,"score":0.5189045},{"id":"https://openalex.org/C50965678","wikidata":"https://www.wikidata.org/wiki/Q2724302","display_name":"Abnormality","level":2,"score":0.48086005},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47576708},{"id":"https://openalex.org/C58471807","wikidata":"https://www.wikidata.org/wiki/Q327120","display_name":"Receiver operating characteristic","level":2,"score":0.47240204},{"id":"https://openalex.org/C141404830","wikidata":"https://www.wikidata.org/wiki/Q2823869","display_name":"AdaBoost","level":3,"score":0.4714509},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4686467},{"id":"https://openalex.org/C2777286243","wikidata":"https://www.wikidata.org/wiki/Q5591926","display_name":"Grading (engineering)","level":2,"score":0.45530787},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.4367722},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.2740405},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.14326996},{"id":"https://openalex.org/C555293320","wikidata":"https://www.wikidata.org/wiki/Q12206","display_name":"Diabetes mellitus","level":2,"score":0.11719251},{"id":"https://openalex.org/C147176958","wikidata":"https://www.wikidata.org/wiki/Q77590","display_name":"Civil engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C134018914","wikidata":"https://www.wikidata.org/wiki/Q162606","display_name":"Endocrinology","level":1,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1166/jmihi.2022.3923","pdf_url":null,"source":{"id":"https://openalex.org/S2502047498","display_name":"Journal of Medical Imaging and Health Informatics","issn_l":"2156-7026","issn":["2156-7026","2156-7018"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310321646","host_organization_name":"American Scientific Publishers","host_organization_lineage":["https://openalex.org/P4310321646"],"host_organization_lineage_names":["American Scientific Publishers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","score":0.47,"id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1980276147","https://openalex.org/W2001353247","https://openalex.org/W2031033658","https://openalex.org/W2041844637","https://openalex.org/W2096451472","https://openalex.org/W2120194796","https://openalex.org/W2166524747","https://openalex.org/W2727650337","https://openalex.org/W2886522935","https://openalex.org/W2907743631","https://openalex.org/W2946839276","https://openalex.org/W2983395335","https://openalex.org/W2997906987","https://openalex.org/W3011462389","https://openalex.org/W3015027157","https://openalex.org/W3025283958","https://openalex.org/W3037054321","https://openalex.org/W3085574514","https://openalex.org/W3089838827","https://openalex.org/W3127722248","https://openalex.org/W4322697885"],"related_works":["https://openalex.org/W4321635934","https://openalex.org/W4224212887","https://openalex.org/W3203638897","https://openalex.org/W3190721986","https://openalex.org/W3039673966","https://openalex.org/W3033216196","https://openalex.org/W2747837925","https://openalex.org/W2614491706","https://openalex.org/W2417397217","https://openalex.org/W2355857550"],"abstract_inverted_index":{"Diabetic":[0],"Retinopathy":[1],"(DR)":[2],"is":[3,19,29,48,78,206],"a":[4,49,126],"critical":[5],"abnormality":[6],"in":[7],"the":[8,75,103,117,121,131,134,149,157,161,167,182,201],"retina":[9],"mainly":[10],"caused":[11],"by":[12,85,147,166],"diabetes.":[13],"The":[14,25,35,71,94,138,177,195],"early":[15],"diagnosis":[16,28,54],"of":[17,74,81,100,114,116,133,160,211,213],"DR":[18,27,53,69,82,101,140,215],"essential":[20],"to":[21,40,67,129],"avoid":[22],"painless":[23],"blindness.":[24],"conventional":[26],"manual":[30],"and":[31,42,89,106,145,170,192],"requires":[32],"skilled":[33],"Ophthalmologists.":[34],"Ophthalmologist\u2019s":[36],"analyses":[37],"are":[38],"subjective":[39],"inconsistency":[41],"record":[43],"maintenance":[44],"issues.":[45],"Hence,":[46],"there":[47],"need":[50],"for":[51],"other":[52],"methods.":[55,217],"In":[56,154],"this":[57],"paper,":[58],"we":[59,124],"proposed":[60,76,95,135,139,162,183,202],"an":[61,79],"AdaBoost":[62],"algorithm-based":[63],"ensemble":[64,90,136],"classification":[65,83,158,204,216],"approach":[66,77,163,184],"classify":[68],"grades.":[70],"major":[72],"objective":[73],"enhancement":[80],"performance":[84],"using":[86,102,148],"optimized":[87],"features":[88,109],"machine":[91],"learning":[92],"techniques.":[93],"method":[96],"classifies":[97],"different":[98],"grades":[99],"Meyer":[104],"wavelet":[105],"retinal":[107],"vessel-based":[108],"extracted":[110],"from":[111],"multiple":[112],"regions":[113],"interest":[115],"retina.":[118],"To":[119],"improve":[120],"predictive":[122],"accuracy,":[123,191],"used":[125],"Bayesian":[127],"algorithm":[128],"optimize":[130],"hyper-parameters":[132],"classifier.":[137],"grading":[141],"model":[142],"was":[143,164],"constructed":[144],"evaluated":[146,165],"MESSIDOR":[150],"fundus":[151],"image":[152],"dataset.":[153],"evaluation":[155,178],"experiment,":[156],"outcome":[159,205],"confusion":[168],"matrix":[169],"receiver":[171],"operating":[172],"characteristic":[173],"(ROC)":[174],"based":[175],"metrics.":[176],"experiments":[179],"show":[180],"that":[181,200,210],"attained":[185],"99.2%":[186],"precision,":[187],"98.2%":[188],"recall,":[189],"99%":[190],"0.99":[193],"AUC.":[194],"experimental":[196],"findings":[197],"also":[198],"indicate":[199],"approach\u2019s":[203],"significantly":[207],"better":[208],"than":[209],"state":[212],"art":[214]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285127812","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-03-22T13:09:51.588709","created_date":"2022-07-14"}