{"id":"https://openalex.org/W2013635561","doi":"https://doi.org/10.1163/016918611x594775","title":"Unsupervised Segmentation of Human Motion Data Using a Sticky Hierarchical Dirichlet Process-Hidden Markov Model and Minimal Description Length-Based Chunking Method for Imitation Learning","display_name":"Unsupervised Segmentation of Human Motion Data Using a Sticky Hierarchical Dirichlet Process-Hidden Markov Model and Minimal Description Length-Based Chunking Method for Imitation Learning","publication_year":2011,"publication_date":"2011-01-01","ids":{"openalex":"https://openalex.org/W2013635561","doi":"https://doi.org/10.1163/016918611x594775","mag":"2013635561"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1163/016918611x594775","pdf_url":null,"source":{"id":"https://openalex.org/S192584203","display_name":"Advanced Robotics","issn_l":"0169-1864","issn":["0169-1864","1568-5535"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023160093","display_name":"Tadahiro Taniguchi","orcid":"https://orcid.org/0000-0002-5682-2076"},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"funder","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tadahiro Taniguchi","raw_affiliation_strings":["Ritsumeikan Univeirsity, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan;, Email: taniguchi@ci.ritsumei.ac.jp"],"affiliations":[{"raw_affiliation_string":"Ritsumeikan Univeirsity, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan;, Email: taniguchi@ci.ritsumei.ac.jp","institution_ids":["https://openalex.org/I135768898"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012353689","display_name":"Keita Hamahata","orcid":null},"institutions":[{"id":"https://openalex.org/I135768898","display_name":"Ritsumeikan University","ror":"https://ror.org/0197nmd03","country_code":"JP","type":"funder","lineage":["https://openalex.org/I135768898","https://openalex.org/I4390039241"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Keita Hamahata","raw_affiliation_strings":["Ritsumeikan Univeirsity, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan"],"affiliations":[{"raw_affiliation_string":"Ritsumeikan Univeirsity, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan","institution_ids":["https://openalex.org/I135768898"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5112415166","display_name":"Naoto Iwahashi","orcid":null},"institutions":[{"id":"https://openalex.org/I90023481","display_name":"National Institute of Information and Communications Technology","ror":"https://ror.org/016bgq349","country_code":"JP","type":"funder","lineage":["https://openalex.org/I90023481"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Naoto Iwahashi","raw_affiliation_strings":["National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Sohraku-gun, Kyoto 619-0289, Japan"],"affiliations":[{"raw_affiliation_string":"National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika-cho, Sohraku-gun, Kyoto 619-0289, Japan","institution_ids":["https://openalex.org/I90023481"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.721,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":21,"citation_normalized_percentile":{"value":0.903723,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"25","issue":"17","first_page":"2143","last_page":"2172"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/chunking","display_name":"Chunking (psychology)","score":0.6424},{"id":"https://openalex.org/keywords/dirichlet-process","display_name":"Dirichlet Process","score":0.5675324},{"id":"https://openalex.org/keywords/minimum-description-length","display_name":"Minimum description length","score":0.5277631},{"id":"https://openalex.org/keywords/motion-capture","display_name":"Motion Capture","score":0.44135344},{"id":"https://openalex.org/keywords/hierarchical-dirichlet-process","display_name":"Hierarchical Dirichlet process","score":0.43206948}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67539734},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.65956235},{"id":"https://openalex.org/C203357204","wikidata":"https://www.wikidata.org/wiki/Q1089605","display_name":"Chunking (psychology)","level":2,"score":0.6424},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5764665},{"id":"https://openalex.org/C2781280628","wikidata":"https://www.wikidata.org/wiki/Q5280766","display_name":"Dirichlet process","level":3,"score":0.5675324},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.55912364},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.5460896},{"id":"https://openalex.org/C87465248","wikidata":"https://www.wikidata.org/wiki/Q1417790","display_name":"Minimum description length","level":2,"score":0.5277631},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5191223},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.471425},{"id":"https://openalex.org/C48007421","wikidata":"https://www.wikidata.org/wiki/Q676252","display_name":"Motion capture","level":3,"score":0.44135344},{"id":"https://openalex.org/C141318989","wikidata":"https://www.wikidata.org/wiki/Q5753066","display_name":"Hierarchical Dirichlet process","level":4,"score":0.43206948},{"id":"https://openalex.org/C126388530","wikidata":"https://www.wikidata.org/wiki/Q1131737","display_name":"Imitation","level":2,"score":0.42782342},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3750864},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3435469},{"id":"https://openalex.org/C500882744","wikidata":"https://www.wikidata.org/wiki/Q269236","display_name":"Latent Dirichlet allocation","level":3,"score":0.19183874},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.10308936},{"id":"https://openalex.org/C171686336","wikidata":"https://www.wikidata.org/wiki/Q3532085","display_name":"Topic model","level":2,"score":0.09043902},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1163/016918611x594775","pdf_url":null,"source":{"id":"https://openalex.org/S192584203","display_name":"Advanced Robotics","issn_l":"0169-1864","issn":["0169-1864","1568-5535"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320547","host_organization_name":"Taylor & Francis","host_organization_lineage":["https://openalex.org/P4310320547"],"host_organization_lineage_names":["Taylor & Francis"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1486177145","https://openalex.org/W1539673959","https://openalex.org/W1601795611","https://openalex.org/W1977576450","https://openalex.org/W1982486572","https://openalex.org/W2043385819","https://openalex.org/W2049704739","https://openalex.org/W2055184000","https://openalex.org/W2056639157","https://openalex.org/W2069429561","https://openalex.org/W2076044107","https://openalex.org/W2081203294","https://openalex.org/W2089484716","https://openalex.org/W2093341892","https://openalex.org/W2115742360","https://openalex.org/W2120591602","https://openalex.org/W2130726249","https://openalex.org/W2136632951","https://openalex.org/W2139111875","https://openalex.org/W2153164668","https://openalex.org/W2158266063","https://openalex.org/W2160429843","https://openalex.org/W2161491846","https://openalex.org/W2169895393","https://openalex.org/W2171425630","https://openalex.org/W2331729753","https://openalex.org/W4242874612"],"related_works":["https://openalex.org/W4381683374","https://openalex.org/W4321471958","https://openalex.org/W3142820572","https://openalex.org/W2397915214","https://openalex.org/W2158266063","https://openalex.org/W2065326927","https://openalex.org/W2059879108","https://openalex.org/W2034315836","https://openalex.org/W1989637290","https://openalex.org/W114980831"],"abstract_inverted_index":{"We":[0,118,190,206,252],"propose":[1],"an":[2,64,92,122,147,167],"unsupervised":[3,148,168],"motion":[4,26,149,224,236],"segmentation":[5,150],"method":[6,125,151,170,194,216],"for":[7,152],"enabling":[8],"a":[9,41,156,162,173,241],"robot":[10,44],"to":[11,46,57,72,195,210,232],"imitate":[12,58],"and":[13,39,50,111,166,176,201,244],"perform":[14],"various":[15,29],"unit":[16,32,52,133,203,219],"motions":[17,53,104,130,134,220],"by":[18,138],"observing":[19],"unsegmented":[20,24,74,187,222,234],"human":[21,25,75,188,204,223,235],"motion.":[22,76,189],"Natural":[23],"data":[27,49,56,109],"contain":[28],"types":[30],"of":[31,87,95,183,186,249,257,263],"motions,":[33],"such":[34],"as":[35],"'waving":[36],"good-bye',":[37],"'walking'":[38],"'throwing":[40],"ball'.":[42],"A":[43],"has":[45],"segment":[47],"the":[48,55,59,84,103,107,177,198,247,255,258,261,264],"extract":[51,202,218],"from":[54,221],"motions.":[60,205],"In":[61],"previous":[62],"work,":[63],"ergodic":[65],"hidden":[66,96,250],"Markov":[67],"model":[68,73,233],"(HMM)":[69],"was":[70],"used":[71,231],"However,":[77],"there":[78,114],"are":[79,110,115],"two":[80],"main":[81],"problems":[82],"with":[83,197,240],"classical":[85],"use":[86],"this":[88,192,212],"model.":[89,265],"(i)":[90],"Setting":[91],"appropriate":[93],"number":[94,248],"states":[97],"is":[98],"difficult":[99],"because":[100],"how":[101,112],"complex":[102],"contained":[105],"in":[106],"learning":[108,154,185],"many":[113],"unknown.":[116],"(ii)":[117],"did":[119],"not":[120],"have":[121],"effective":[123],"chunking":[124,169,193],"that":[126],"could":[127,217],"chunk":[128],"elemental":[129],"into":[131],"meaningful":[132],"without":[135],"being":[136],"captured":[137],"local":[139],"minima.":[140],"To":[141],"overcome":[142],"these":[143],"problems,":[144],"we":[145],"developed":[146,191],"imitation":[153,184],"using":[155],"sticky":[157,199,227],"hierarchical":[158],"Dirichlet":[159],"process":[160],"(HDP)-HMM,":[161],"nonparametric":[163],"Bayesian":[164],"model,":[165],"based":[171],"on":[172,260],"Gibbs":[174],"sampler":[175],"minimal":[178],"description":[179],"length":[180],"(MDL)":[181],"principle":[182],"work":[196],"HDP-HMM":[200,228,259],"conducted":[207],"several":[208],"experiments":[209],"evaluate":[211],"method.":[213],"The":[214,226],"proposed":[215],"data.":[225],"can":[229],"be":[230],"more":[237],"accurately":[238],"than":[239],"conventional":[242],"HMM":[243],"simultaneously":[245],"estimate":[246],"states.":[251],"also":[253],"evaluated":[254],"dependency":[256],"hyperparameters":[262]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2013635561","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":4},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":4}],"updated_date":"2025-04-16T12:05:39.072448","created_date":"2016-06-24"}