{"id":"https://openalex.org/W2027084300","doi":"https://doi.org/10.1145/502512.502547","title":"Gaining insights into support vector machine pattern classifiers using projection-based tour methods","display_name":"Gaining insights into support vector machine pattern classifiers using projection-based tour methods","publication_year":2001,"publication_date":"2001-08-26","ids":{"openalex":"https://openalex.org/W2027084300","doi":"https://doi.org/10.1145/502512.502547","mag":"2027084300"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/502512.502547","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067341711","display_name":"Doina Caragea","orcid":"https://orcid.org/0000-0002-6440-0914"},"institutions":[{"id":"https://openalex.org/I173911158","display_name":"Iowa State University","ror":"https://ror.org/04rswrd78","country_code":"US","type":"education","lineage":["https://openalex.org/I173911158"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Doina Caragea","raw_affiliation_strings":["Iowa State University, Ames Iowa."],"affiliations":[{"raw_affiliation_string":"Iowa State University, Ames Iowa.","institution_ids":["https://openalex.org/I173911158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060227214","display_name":"Dianne Cook","orcid":"https://orcid.org/0000-0002-3813-7155"},"institutions":[{"id":"https://openalex.org/I173911158","display_name":"Iowa State University","ror":"https://ror.org/04rswrd78","country_code":"US","type":"education","lineage":["https://openalex.org/I173911158"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dianne Cook","raw_affiliation_strings":["Iowa State University, Ames Iowa."],"affiliations":[{"raw_affiliation_string":"Iowa State University, Ames Iowa.","institution_ids":["https://openalex.org/I173911158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004737962","display_name":"Vasant Honavar","orcid":"https://orcid.org/0000-0001-5399-3489"},"institutions":[{"id":"https://openalex.org/I173911158","display_name":"Iowa State University","ror":"https://ror.org/04rswrd78","country_code":"US","type":"education","lineage":["https://openalex.org/I173911158"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Vasant G. Honavar","raw_affiliation_strings":["Iowa State University, Ames Iowa."],"affiliations":[{"raw_affiliation_string":"Iowa State University, Ames Iowa.","institution_ids":["https://openalex.org/I173911158"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.178,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":50,"citation_normalized_percentile":{"value":0.85479,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"251","last_page":"256"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperplane","display_name":"Hyperplane","score":0.8817395},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.62788147},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.6214206}],"concepts":[{"id":"https://openalex.org/C68693459","wikidata":"https://www.wikidata.org/wiki/Q657586","display_name":"Hyperplane","level":2,"score":0.8817395},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.8759322},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.71056},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6776047},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65646017},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6488719},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.62788147},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.6214206},{"id":"https://openalex.org/C125168437","wikidata":"https://www.wikidata.org/wiki/Q7625184","display_name":"Structured support vector machine","level":3,"score":0.5282133},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.52301425},{"id":"https://openalex.org/C145828037","wikidata":"https://www.wikidata.org/wiki/Q17086219","display_name":"Least squares support vector machine","level":3,"score":0.43034863},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41128153},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.4105587},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2894937},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.20983616},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/502512.502547","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1576520375","https://openalex.org/W1582401051","https://openalex.org/W1599111604","https://openalex.org/W1968723695","https://openalex.org/W1978841917","https://openalex.org/W1990354951","https://openalex.org/W2008056655","https://openalex.org/W2015562474","https://openalex.org/W2019538447","https://openalex.org/W2102794349","https://openalex.org/W2119821739","https://openalex.org/W2156909104","https://openalex.org/W3083577026","https://openalex.org/W4242123375"],"related_works":["https://openalex.org/W4389381704","https://openalex.org/W2944968625","https://openalex.org/W2650781048","https://openalex.org/W26430904","https://openalex.org/W2348982811","https://openalex.org/W2220937770","https://openalex.org/W2178308471","https://openalex.org/W2122277321","https://openalex.org/W1964604696","https://openalex.org/W1489507320"],"abstract_inverted_index":{"This":[0],"paper":[1],"discusses":[2],"visual":[3,94],"methods":[4,111],"that":[5,96],"can":[6,97],"be":[7,65],"used":[8],"to":[9,64,92,112],"understand":[10],"and":[11],"interpret":[12],"the":[13,77,99,106],"results":[14],"of":[15,71,84,108],"classification":[16,74],"using":[17],"support":[18],"vector":[19],"machines":[20],"(SVM)":[21],"on":[22,122],"data":[23],"with":[24,119],"continuous":[25],"real-valued":[26],"variables.":[27],"SVM":[28,60,117],"induction":[29],"algorithms":[30],"build":[31],"pattern":[32,47,58,73],"classifiers":[33,118],"by":[34,52],"identifying":[35],"a":[36,69],"maximal":[37],"margin":[38],"separating":[39,78],"hyperplane":[40,79],"from":[41],"training":[42],"examples":[43],"in":[44,68,82],"high":[45],"dimensional":[46],"spaces":[48,50],"or":[49],"induced":[51],"suitable":[53],"nonlinear":[54],"kernel":[55],"transformations":[56],"over":[57],"spaces.":[59,103],"have":[61],"been":[62],"demonstrated":[63],"quite":[66],"effective":[67],"number":[70],"practical":[72],"tasks.":[75],"Since":[76],"is":[80,90],"defined":[81],"terms":[83],"more":[85],"than":[86],"two":[87],"variables":[88],"it":[89],"necessary":[91],"use":[93,107],"techniques":[95],"navigate":[98],"viewer":[100],"through":[101],"high-dimensional":[102],"We":[104],"demonstrate":[105],"projection-based":[109],"tour":[110],"gain":[113],"useful":[114],"insights":[115],"into":[116],"linear":[120],"kernels":[121],"8-dimensional":[123],"data.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2027084300","counts_by_year":[{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":4},{"year":2015,"cited_by_count":5},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":2}],"updated_date":"2025-01-04T04:28:25.690400","created_date":"2016-06-24"}