{"id":"https://openalex.org/W4401090688","doi":"https://doi.org/10.1145/3680542","title":"Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing","display_name":"Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing","publication_year":2024,"publication_date":"2024-07-29","ids":{"openalex":"https://openalex.org/W4401090688","doi":"https://doi.org/10.1145/3680542"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3680542","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3680542","source":{"id":"https://openalex.org/S118992489","display_name":"Journal of the ACM","issn_l":"0004-5411","issn":["0004-5411","1557-735X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3680542","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033915017","display_name":"Namiko Matsumoto","orcid":"https://orcid.org/0000-0001-8777-4233"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"funder","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Namiko Matsumoto","raw_affiliation_strings":["Computer Science and Engineering, University of California San Diego, La Jolla, United States"],"affiliations":[{"raw_affiliation_string":"Computer Science and Engineering, University of California San Diego, La Jolla, United States","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051046818","display_name":"Arya Mazumdar","orcid":"https://orcid.org/0000-0003-4605-7996"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"funder","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arya Mazumdar","raw_affiliation_strings":["Halicioglu Data Science Institute, University of California San Diego, La Jolla, United States"],"affiliations":[{"raw_affiliation_string":"Halicioglu Data Science Institute, University of California San Diego, La Jolla, United States","institution_ids":["https://openalex.org/I36258959"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":79},"biblio":{"volume":"71","issue":"5","first_page":"1","last_page":"64"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12015","display_name":"Photoacoustic and Ultrasonic Imaging","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11778","display_name":"Electrical and Bioimpedance Tomography","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bit","display_name":"Bit (key)","score":0.6483918}],"concepts":[{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.65160775},{"id":"https://openalex.org/C117011727","wikidata":"https://www.wikidata.org/wiki/Q1278488","display_name":"Bit (key)","level":2,"score":0.6483918},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6057355},{"id":"https://openalex.org/C191178318","wikidata":"https://www.wikidata.org/wiki/Q2256906","display_name":"Thresholding","level":3,"score":0.59055346},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.57922214},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5452148},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.45053196},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.36141473},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.25232863},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.15304711},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.08473149},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3680542","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3680542","source":{"id":"https://openalex.org/S118992489","display_name":"Journal of the ACM","issn_l":"0004-5411","issn":["0004-5411","1557-735X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2207.03427","pdf_url":"http://arxiv.org/pdf/2207.03427","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3680542","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3680542","source":{"id":"https://openalex.org/S118992489","display_name":"Journal of the ACM","issn_l":"0004-5411","issn":["0004-5411","1557-735X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1605194072","https://openalex.org/W1902198634","https://openalex.org/W2012833704","https://openalex.org/W2047765680","https://openalex.org/W2060430274","https://openalex.org/W2112038498","https://openalex.org/W2121716262","https://openalex.org/W2145096794","https://openalex.org/W2294622949","https://openalex.org/W2736618363","https://openalex.org/W2949981685","https://openalex.org/W2962977000","https://openalex.org/W2963401889","https://openalex.org/W2964003909","https://openalex.org/W2964322027","https://openalex.org/W3209899339","https://openalex.org/W4250954493","https://openalex.org/W4250955649"],"related_works":["https://openalex.org/W4312766348","https://openalex.org/W4233939244","https://openalex.org/W3123806511","https://openalex.org/W2750730210","https://openalex.org/W2730764323","https://openalex.org/W2236974868","https://openalex.org/W2158224665","https://openalex.org/W2116854923","https://openalex.org/W1661087619","https://openalex.org/W1542224353"],"abstract_inverted_index":{"Compressed":[0],"sensing":[1,35,75],"has":[2],"been":[3],"a":[4,37,49,106,124,158,269,279],"very":[5],"successful":[6],"high-dimensional":[7],"signal":[8,50,81,201],"acquisition":[9],"and":[10,130,176,217,243,260],"recovery":[11,70,89,102,223],"technique":[12],"that":[13,157,193,248],"relies":[14],"on":[15,215],"linear":[16,46],"operations.":[17],"However,":[18],"the":[19,57,60,69,79,94,114,138,141,174,179,194,199,233,240,250,275],"actual":[20],"measurements":[21,66,112,206,254],"of":[22,41,48,59,64,103,140,146,160,235,253,268],"signals":[23],"have":[24],"to":[25,53,77,93,133,198,208,232,274],"be":[26],"quantized":[27,39],"before":[28],"storing":[29],"or":[30],"processing":[31],"them.":[32],"One-bit":[33],"compressed":[34,42,74,227],"is":[36,51,91,113,123,131,155,173,182,219,239,264],"heavily":[38],"version":[40],"sensing,":[43],"where":[44,171],"each":[45],"measurement":[47,161],"reduced":[52],"just":[54],"one":[55],"bit:":[56],"sign":[58],"measurement.":[61],"Once":[62],"enough":[63],"such":[65],"are":[67],"collected,":[68],"problem":[71,90,97,281],"in":[72,98,225,255],"one-bit":[73,111,226],"aims":[76],"find":[78],"original":[80,200],"with":[82,202],"as":[83,86],"much":[84],"accuracy":[85],"possible.":[87],"The":[88,121,143],"related":[92],"traditional":[95],"\u201chalfspace-learning\u201d":[96],"learning":[99],"theory.":[100],"For":[101],"sparse":[104],"vectors,":[105],"popular":[107],"reconstruction":[108],"method":[109,129,224],"from":[110],"binary":[115],"iterative":[116],"hard":[117],"thresholding":[118],"(BIHT)":[119],"algorithm.":[120],"algorithm":[122,247,272],"simple":[125],"projected":[126],"subgradient":[127],"descent":[128,271],"known":[132,156],"converge":[134,197],"well":[135],"empirically,":[136],"despite":[137],"nonconvexity":[139],"problem.":[142],"convergence":[144],"property":[145],"BIHT":[147,195,238],"was":[148],"not":[149],"theoretically":[150],"fully":[151],"justified":[152],"(e.g.,":[153],"it":[154],"number":[159,252],"greater":[162],"than":[163],"\\(\\max":[164],"\\lbrace":[165],"k^{10},":[166],"24^{48},":[167],"k^{3.5}/\\epsilon":[168],"\\rbrace\\)":[169],",":[170],"k":[172,216,259],"sparsity":[175],"\\(\\epsilon\\)":[177,218,261],"denotes":[178],"approximation":[180],"error,":[181],"sufficient,":[183],"Friedlander":[184],"et":[185],"al.":[186],"[2021].":[187],"In":[188],"this":[189,213,230],"article":[190],"we":[191],"show":[192],"estimates":[196],"only":[203,241],"\\(\\frac{k}{\\epsilon":[204],"}\\)":[205],"(up":[207],"logarithmic":[209],"factors).":[210],"Note":[211],"that,":[212],"dependence":[214],"optimal":[220,251],"for":[221,278],"any":[222],"sensing.":[228],"With":[229],"result,":[231],"best":[234],"our":[236],"knowledge,":[237],"practical":[242],"efficient":[244],"(polynomial":[245],"time)":[246],"requires":[249],"all":[256],"parameters":[257],"(both":[258],").":[262],"This":[263],"also":[265],"an":[266],"example":[267],"gradient":[270],"converging":[273],"correct":[276],"solution":[277],"nonconvex":[280],"under":[282],"suitable":[283],"structural":[284],"conditions.":[285]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4401090688","counts_by_year":[],"updated_date":"2025-03-20T00:56:54.126926","created_date":"2024-07-31"}