{"id":"https://openalex.org/W4399254292","doi":"https://doi.org/10.1145/3656766.3656799","title":"An Entity-Relationship Extraction Method for Epidemiological investigation Texts Based on Machine Reading Comprehension","display_name":"An Entity-Relationship Extraction Method for Epidemiological investigation Texts Based on Machine Reading Comprehension","publication_year":2023,"publication_date":"2023-11-24","ids":{"openalex":"https://openalex.org/W4399254292","doi":"https://doi.org/10.1145/3656766.3656799"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3656766.3656799","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103167429","display_name":"LU Jun-jie","orcid":"https://orcid.org/0009-0006-0840-4829"},"institutions":[{"id":"https://openalex.org/I102208913","display_name":"Shihezi University","ror":"https://ror.org/04x0kvm78","country_code":"CN","type":"funder","lineage":["https://openalex.org/I102208913"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junjie Lu","raw_affiliation_strings":["College of Information Science and Technology, Shihezi University, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Technology, Shihezi University, China","institution_ids":["https://openalex.org/I102208913"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008546045","display_name":"Feng Han","orcid":"https://orcid.org/0009-0006-7319-1479"},"institutions":[{"id":"https://openalex.org/I102208913","display_name":"Shihezi University","ror":"https://ror.org/04x0kvm78","country_code":"CN","type":"funder","lineage":["https://openalex.org/I102208913"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feng Han","raw_affiliation_strings":["College of Information Science and Technology, Shihezi University, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Technology, Shihezi University, China","institution_ids":["https://openalex.org/I102208913"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075835660","display_name":"Mingfeng Zhou","orcid":"https://orcid.org/0009-0000-3556-7013"},"institutions":[{"id":"https://openalex.org/I102208913","display_name":"Shihezi University","ror":"https://ror.org/04x0kvm78","country_code":"CN","type":"funder","lineage":["https://openalex.org/I102208913"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingfeng Zhou","raw_affiliation_strings":["College of Information Science and Technology, Shihezi University, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Technology, Shihezi University, China","institution_ids":["https://openalex.org/I102208913"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063680512","display_name":"Yichen Hou","orcid":"https://orcid.org/0009-0001-5204-7877"},"institutions":[{"id":"https://openalex.org/I102208913","display_name":"Shihezi University","ror":"https://ror.org/04x0kvm78","country_code":"CN","type":"funder","lineage":["https://openalex.org/I102208913"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yichen Hou","raw_affiliation_strings":["College of Information Science and Technology, Shihezi University, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Technology, Shihezi University, China","institution_ids":["https://openalex.org/I102208913"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"187","last_page":"195"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13910","display_name":"Computational and Text Analysis Methods","score":0.9577,"subfield":{"id":"https://openalex.org/subfields/3300","display_name":"General Social Sciences"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9085,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relationship-extraction","display_name":"Relationship extraction","score":0.46059692}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83369875},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6528883},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.64068806},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5585565},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.5395014},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.5179295},{"id":"https://openalex.org/C511192102","wikidata":"https://www.wikidata.org/wiki/Q5156948","display_name":"Comprehension","level":2,"score":0.486282},{"id":"https://openalex.org/C100660578","wikidata":"https://www.wikidata.org/wiki/Q18733","display_name":"Recall","level":2,"score":0.48572284},{"id":"https://openalex.org/C153604712","wikidata":"https://www.wikidata.org/wiki/Q7310755","display_name":"Relationship extraction","level":3,"score":0.46059692},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.44583723},{"id":"https://openalex.org/C554936623","wikidata":"https://www.wikidata.org/wiki/Q199657","display_name":"Reading (process)","level":2,"score":0.42553765},{"id":"https://openalex.org/C2778780117","wikidata":"https://www.wikidata.org/wiki/Q3269423","display_name":"Reading comprehension","level":3,"score":0.42401972},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.11503366},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08041206},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3656766.3656799","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W2541443726","https://openalex.org/W2798734500","https://openalex.org/W2952370363","https://openalex.org/W3034862440"],"related_works":["https://openalex.org/W842810586","https://openalex.org/W52604173","https://openalex.org/W4319940250","https://openalex.org/W2352298027","https://openalex.org/W2161828220","https://openalex.org/W2092919065","https://openalex.org/W2083863157","https://openalex.org/W2082296339","https://openalex.org/W1972348076","https://openalex.org/W1964225603"],"abstract_inverted_index":{"In":[0],"order":[1],"to":[2,71,105,126,149,202],"improve":[3],"the":[4,18,23,31,58,69,90,95,107,111,114,128,132,135,139,151,157,161,167,172,197,203,214,221],"efficiency":[5],"and":[6,20,29,66,80,94,98,113,120,134,141,153,164,186],"accuracy":[7,179],"of":[8,22,42,77,156,180,184,190,205,217,223],"entity-relationship":[9,34,59,169,206],"extraction":[10,35,40,60,170,207],"from":[11,74],"epidemiological":[12,25,32,52,78],"investigation":[13,26,33,53,79],"information,":[14,28,55],"this":[15,209],"study":[16],"annotates":[17],"entities":[19],"relationships":[21,44],"collected":[24],"text":[27,54,75,115],"constructs":[30],"dataset.":[36],"Proposing":[37],"a":[38,62,86,117,122,182],"joint":[39],"method":[41,173,198],"entity":[43],"based":[45],"on":[46,160],"Machine":[47],"Reading":[48],"Understanding":[49],"framework":[50],"for":[51,213],"which":[56],"transforms":[57],"into":[61],"machine":[63],"reading":[64,91],"comprehension,":[65],"firstly,":[67],"uses":[68],"BERT":[70],"extract":[72],"entity-relationships":[73],"information":[76,109],"generate":[81],"word":[82],"vectors":[83],"that":[84,196],"contain":[85],"direct":[87],"link":[88],"between":[89,110,131],"comprehension":[92],"problem":[93],"streaming":[96],"text,":[97,140],"use":[99],"Bi-directional":[100],"recurrent":[101],"neural":[102],"networks":[103],"BiLSTM":[104],"capture":[106],"semantic":[108,129],"question":[112,133],"at":[116],"deeper":[118],"level,":[119],"introduces":[121],"multi-head":[123],"self-attention":[124],"mechanism":[125],"strengthen":[127],"associations":[130],"potential":[136],"answers":[137],"within":[138],"finally":[142],"two":[143],"independent":[144],"binary":[145],"classifiers":[146],"are":[147],"used":[148],"predict":[150],"beginning":[152],"end":[154],"positions":[155],"answers.":[158],"Based":[159],"constructed":[162],"dataset":[163],"compared":[165],"with":[166,177],"mainstream":[168],"model,":[171],"achieves":[174],"better":[175],"results,":[176],"an":[178,187],"85.12%,":[181],"recall":[183],"84.54%":[185],"F1":[188],"value":[189],"84.83%.":[191],"The":[192],"experimental":[193],"results":[194],"demonstrate":[195],"can":[199],"be":[200],"applied":[201],"task":[204],"in":[208,220],"field,":[210],"saving":[211],"costs":[212],"automated":[215],"construction":[216],"knowledge":[218],"graphs":[219],"field":[222],"epidemiology.":[224]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399254292","counts_by_year":[],"updated_date":"2025-02-18T08:55:02.922044","created_date":"2024-06-02"}