{"id":"https://openalex.org/W4398758422","doi":"https://doi.org/10.1145/3652628.3652827","title":"Research on Drug Recommendation Based on Feature Interaction and Graph Convolution","display_name":"Research on Drug Recommendation Based on Feature Interaction and Graph Convolution","publication_year":2023,"publication_date":"2023-11-17","ids":{"openalex":"https://openalex.org/W4398758422","doi":"https://doi.org/10.1145/3652628.3652827"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652827","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5098800744","display_name":"Jingyun Zhu","orcid":"https://orcid.org/0009-0004-2104-4245"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingyun Zhu","raw_affiliation_strings":["School of Computer Science and Technology, Xinjiang University, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xinjiang University, China","institution_ids":["https://openalex.org/I96908189"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040465096","display_name":"Hankiz Yilahun","orcid":"https://orcid.org/0009-0004-8548-678X"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hankiz Yilahun","raw_affiliation_strings":["School of Computer Science and Technology, Xinjiang University, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xinjiang University, China","institution_ids":["https://openalex.org/I96908189"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075133420","display_name":"Askar Hamdulla","orcid":"https://orcid.org/0000-0002-2321-308X"},"institutions":[{"id":"https://openalex.org/I96908189","display_name":"Xinjiang University","ror":"https://ror.org/059gw8r13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I96908189"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Askar Hamdulla","raw_affiliation_strings":["School of Future Science and Technology, Xinjiang University, China"],"affiliations":[{"raw_affiliation_string":"School of Future Science and Technology, Xinjiang University, China","institution_ids":["https://openalex.org/I96908189"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"1214","last_page":"1219"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5947345},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.52147496},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.51079226},{"id":"https://openalex.org/keywords/neighbourhood","display_name":"Neighbourhood (mathematics)","score":0.4727807},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.45453128}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79157686},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.61746264},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5947345},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.529171},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.52147496},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.51079226},{"id":"https://openalex.org/C161677786","wikidata":"https://www.wikidata.org/wiki/Q2478475","display_name":"Neighbourhood (mathematics)","level":2,"score":0.4727807},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.45453128},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.43453276},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40254304},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3433824},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3423398},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3309586},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13198328},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1042614},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652827","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.43,"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2509893387","https://openalex.org/W2759136286","https://openalex.org/W2907349915","https://openalex.org/W2911778742","https://openalex.org/W2912351665","https://openalex.org/W2945623882","https://openalex.org/W2949687195","https://openalex.org/W2963911286","https://openalex.org/W3034364571","https://openalex.org/W3098087397","https://openalex.org/W3106439716"],"related_works":["https://openalex.org/W4393363920","https://openalex.org/W4390273403","https://openalex.org/W4386781444","https://openalex.org/W4317039510","https://openalex.org/W4238861846","https://openalex.org/W3197542405","https://openalex.org/W3125580266","https://openalex.org/W3092950680","https://openalex.org/W2150182025","https://openalex.org/W2056712470"],"abstract_inverted_index":{"Existing":[0],"drug":[1,35,139],"recommendation":[2,36,128,194],"algorithms":[3],"often":[4],"ignore":[5],"the":[6,26,64,67,74,102,120,127,131,134,145,150,154,157,165,168,189],"role":[7],"played":[8],"by":[9,57,81,179],"neighbourhood":[10],"information":[11,84],"among":[12],"drugs":[13,52,80,88,172],"in":[14,107],"recommendation,":[15],"and":[16,41,53,79,87,94,138,156,174,181,196],"it":[17],"is":[18,177],"difficult":[19],"to":[20,100,117,148],"model":[21,170,191],"user":[22,135,155],"features.":[23],"To":[24],"address":[25],"above":[27],"problems,":[28],"we":[29,45,72,112],"propose":[30],"a":[31,47,90,96,114],"research":[32],"method":[33],"for":[34],"based":[37],"on":[38,171],"feature":[39,55,136,140],"interaction":[40,151],"graph":[42,49,58],"convolution.":[43],"First,":[44],"introduce":[46],"knowledge":[48],"(KG)":[50],"of":[51,69,77,85,104,123,130,167],"perform":[54],"extraction":[56],"convolution":[59],"algorithm,":[60],"which":[61,125],"effectively":[62],"captures":[63],"correlation":[65],"between":[66,153],"neighbourhoods":[68],"medicines.":[70],"Second,":[71],"enrich":[73],"vector":[75,121],"representation":[76],"users":[78,86],"obtaining":[82],"node":[83],"through":[89],"heterogeneous":[91],"propagation":[92],"layer":[93],"employing":[95],"knowledge-aware":[97],"attention":[98],"mechanism":[99],"distinguish":[101],"contributions":[103],"tail":[105],"entities":[106],"different":[108],"triples.":[109],"In":[110],"addition,":[111],"use":[113],"two-mechanism":[115],"approach":[116],"dynamically":[118],"learn":[119],"representations":[122],"users,":[124],"improves":[126],"effect":[129],"model.":[132],"Finally,":[133],"vectors":[137,141],"are":[142],"fed":[143],"into":[144],"prediction":[146],"module":[147],"obtain":[149],"probability":[152],"drug.":[158],"Compared":[159],"with":[160],"other":[161],"state-of-the-art":[162],"mainstream":[163],"models,":[164],"accuracy":[166,195],"proposed":[169,190],"dataset":[173,176],"Book-Crossing":[175],"improved":[178],"1.01%":[180],"0.8%,":[182],"respectively.":[183],"The":[184],"experimental":[185],"results":[186],"demonstrate":[187],"that":[188],"has":[192],"high":[193],"superior":[197],"overall":[198],"performance.":[199]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398758422","counts_by_year":[],"updated_date":"2025-02-26T11:25:21.468644","created_date":"2024-05-24"}