{"id":"https://openalex.org/W4398233112","doi":"https://doi.org/10.1145/3652628.3652676","title":"LASTNet: A Swin Transformer with LANets Network for Video emotion recognition","display_name":"LASTNet: A Swin Transformer with LANets Network for Video emotion recognition","publication_year":2023,"publication_date":"2023-11-17","ids":{"openalex":"https://openalex.org/W4398233112","doi":"https://doi.org/10.1145/3652628.3652676"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652676","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075212104","display_name":"Xue Juan Bai","orcid":"https://orcid.org/0009-0002-8860-3887"},"institutions":[{"id":"https://openalex.org/I15062923","display_name":"Tianjin Normal University","ror":"https://ror.org/05x2td559","country_code":"CN","type":"education","lineage":["https://openalex.org/I15062923"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xue Bai","raw_affiliation_strings":["College of Computer and Information Engineering, Tianjin Normal University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer and Information Engineering, Tianjin Normal University, China","institution_ids":["https://openalex.org/I15062923"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015987639","display_name":"Jinwei Wang","orcid":"https://orcid.org/0009-0000-6055-0926"},"institutions":[{"id":"https://openalex.org/I15062923","display_name":"Tianjin Normal University","ror":"https://ror.org/05x2td559","country_code":"CN","type":"education","lineage":["https://openalex.org/I15062923"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinwei Wang","raw_affiliation_strings":["Tianjin \"The Belt and Road\" Joint Laboratory, Tianjin Normal University, China"],"affiliations":[{"raw_affiliation_string":"Tianjin \"The Belt and Road\" Joint Laboratory, Tianjin Normal University, China","institution_ids":["https://openalex.org/I15062923"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":69},"biblio":{"volume":"08","issue":null,"first_page":"291","last_page":"294"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.60782},{"id":"https://openalex.org/keywords/facial-expression-analysis","display_name":"Facial Expression Analysis","score":0.593094},{"id":"https://openalex.org/keywords/facial-landmark-detection","display_name":"Facial Landmark Detection","score":0.571728},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.558863},{"id":"https://openalex.org/keywords/affective-computing","display_name":"Affective Computing","score":0.55828},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.505984},{"id":"https://openalex.org/keywords/facial-expression-recognition","display_name":"Facial expression recognition","score":0.45878863}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7585405},{"id":"https://openalex.org/C195704467","wikidata":"https://www.wikidata.org/wiki/Q327968","display_name":"Facial expression","level":2,"score":0.6746189},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.6737497},{"id":"https://openalex.org/C2777438025","wikidata":"https://www.wikidata.org/wiki/Q1339090","display_name":"Emotion recognition","level":2,"score":0.56979585},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55530596},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.51995337},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.505984},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4977112},{"id":"https://openalex.org/C2987714656","wikidata":"https://www.wikidata.org/wiki/Q1185804","display_name":"Facial expression recognition","level":4,"score":0.45878863},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39857653},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.28943408},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08496109},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06970346},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652676","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W2536334481","https://openalex.org/W2546875627","https://openalex.org/W2767618761","https://openalex.org/W2893062474","https://openalex.org/W2894458059","https://openalex.org/W2894871570","https://openalex.org/W2963252191","https://openalex.org/W2980495289","https://openalex.org/W3015028581","https://openalex.org/W3176258108","https://openalex.org/W3202107484","https://openalex.org/W3202406646","https://openalex.org/W4281563484"],"related_works":["https://openalex.org/W4323520705","https://openalex.org/W4240500943","https://openalex.org/W4205986151","https://openalex.org/W2584926856","https://openalex.org/W2355913164","https://openalex.org/W2168968280","https://openalex.org/W2162992774","https://openalex.org/W2116055069","https://openalex.org/W2075935902","https://openalex.org/W1153638794"],"abstract_inverted_index":{"Facial":[0],"expression":[1,40],"is":[2],"one":[3],"of":[4,27,74,104,126,173],"the":[5,25,72,75,88,101,105,124,147,153,183],"most":[6],"real":[7],"and":[8,16,77,121,144,168,170,175],"intuitive":[9],"ways":[10],"to":[11,115],"express":[12],"human":[13],"inner":[14],"emotions,":[15],"there":[17],"are":[18,138,185],"subtle":[19],"differences":[20],"between":[21],"different":[22],"expressions.":[23],"Therefore,":[24],"extraction":[26],"features":[28,81,90,156],"with":[29,63,91,146,179],"strong":[30],"representation":[31,92],"ability":[32],"has":[33],"become":[34],"a":[35,83,97,141],"key":[36],"problem":[37],"in":[38,82],"facial":[39,46,118,127,135],"recognition.":[41],"To":[42,86],"extract":[43,78],"more":[44],"advanced":[45],"emotional":[47],"features,":[48,150],"this":[49,94],"paper":[50,95,159],"proposes":[51],"an":[52],"video":[53,164],"emotion":[54,165],"recognition":[55],"model(LASTNet)":[56],"based":[57],"on":[58],"Video":[59,68],"Swin":[60,69,106],"Transformer":[61,70],"combined":[62],"LANets.":[64],"First,":[65],"we":[66],"use":[67],"as":[71],"backbone":[73],"network,":[76],"spatiotemporal":[79,149,155],"global":[80],"hierarchical":[84],"structure.":[85],"enhance":[87],"spatial":[89,112],"ability,":[93],"adds":[96],"LANets":[98],"module":[99,109],"at":[100],"final":[102],"stage":[103],"Transformer.":[107],"This":[108,158],"uses":[110],"multiple":[111,117,134],"attention":[113,119,128,136],"networks(LANet)":[114],"obtain":[116],"points,":[120],"simultaneously":[122],"enhances":[123],"exploration":[125],"points":[129],"through":[130],"dropping.":[131],"The":[132],"obtained":[133],"maps":[137],"clustered":[139],"using":[140,162],"maximization":[142],"function":[143],"point-multiplied":[145],"original":[148,154],"thus":[151],"enhancing":[152],"spatially.":[157],"evaluated":[160],"LASTNet":[161],"two":[163],"databases,":[166],"CHEAVD":[167],"AFEW,":[169],"achieved":[171],"ACCs":[172],"51.7%":[174],"50.13%,":[176],"respectively.":[177],"Compared":[178],"other":[180],"existing":[181],"methods,":[182],"results":[184],"also":[186],"competitive.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398233112","counts_by_year":[],"updated_date":"2024-11-22T00:43:19.345629","created_date":"2024-05-24"}