{"id":"https://openalex.org/W4398233580","doi":"https://doi.org/10.1145/3652628.3652649","title":"Loan default prediction model for SMES based on FT-CNN","display_name":"Loan default prediction model for SMES based on FT-CNN","publication_year":2023,"publication_date":"2023-11-17","ids":{"openalex":"https://openalex.org/W4398233580","doi":"https://doi.org/10.1145/3652628.3652649"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652649","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102866259","display_name":"Zhikang Zhang","orcid":"https://orcid.org/0009-0008-7677-7971"},"institutions":[{"id":"https://openalex.org/I10660446","display_name":"Kunming University of Science and Technology","ror":"https://ror.org/00xyeez13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I10660446"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhikang Zhang","raw_affiliation_strings":["Kunming University of Science and Technology, China"],"affiliations":[{"raw_affiliation_string":"Kunming University of Science and Technology, China","institution_ids":["https://openalex.org/I10660446"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052333402","display_name":"Chen Gong","orcid":"https://orcid.org/0009-0003-6497-5739"},"institutions":[{"id":"https://openalex.org/I10660446","display_name":"Kunming University of Science and Technology","ror":"https://ror.org/00xyeez13","country_code":"CN","type":"funder","lineage":["https://openalex.org/I10660446"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Gong","raw_affiliation_strings":["Kunming University of Science and Technology, China"],"affiliations":[{"raw_affiliation_string":"Kunming University of Science and Technology, China","institution_ids":["https://openalex.org/I10660446"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"121","last_page":"125"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11653","display_name":"Financial Distress and Bankruptcy Prediction","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1402","display_name":"Accounting"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11653","display_name":"Financial Distress and Bankruptcy Prediction","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1402","display_name":"Accounting"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9243,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.58820134},{"id":"https://openalex.org/keywords/distortion","display_name":"Distortion (music)","score":0.53360254},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.4203607}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6430831},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6194308},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.58820134},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57875276},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.562346},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.5396538},{"id":"https://openalex.org/C126780896","wikidata":"https://www.wikidata.org/wiki/Q899871","display_name":"Distortion (music)","level":4,"score":0.53360254},{"id":"https://openalex.org/C2777764128","wikidata":"https://www.wikidata.org/wiki/Q189539","display_name":"Loan","level":2,"score":0.52171487},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5067907},{"id":"https://openalex.org/C113238511","wikidata":"https://www.wikidata.org/wiki/Q1071612","display_name":"k-nearest neighbors algorithm","level":2,"score":0.46960223},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.42863253},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.4203607},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37404686},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36197156},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20946681},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.19528067},{"id":"https://openalex.org/C194257627","wikidata":"https://www.wikidata.org/wiki/Q211554","display_name":"Amplifier","level":3,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3652628.3652649","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.63,"id":"https://metadata.un.org/sdg/8","display_name":"Decent work and economic growth"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":2,"referenced_works":["https://openalex.org/W2124617452","https://openalex.org/W4239557188"],"related_works":["https://openalex.org/W4380789568","https://openalex.org/W4379523021","https://openalex.org/W4322721277","https://openalex.org/W4239033281","https://openalex.org/W4210430843","https://openalex.org/W3176621072","https://openalex.org/W3105745662","https://openalex.org/W2995475466","https://openalex.org/W2356785732","https://openalex.org/W2146824712"],"abstract_inverted_index":{"Credit":[0],"risk":[1,173],"is":[2],"related":[3],"to":[4,60,77,99,189],"the":[5,13,28,49,62,70,78,101,113,125,169,190],"operation":[6],"and":[7,23,32,69,106,118,145,147,152,165,183],"survival":[8],"of":[9,15,30,53,81,90,103,115,129,143,171,174,192,196],"banks.":[10],"To":[11],"solve":[12],"problems":[14],"data":[16,64,104],"distortion,":[17],"non-obvious":[18],"features,":[19],"low":[20,107],"feature":[21,25,43,66,108,120],"dimension":[22,109],"weak":[24,119],"correlation":[26,121],"in":[27,135,180],"loans":[29],"small":[31],"medium-sized":[33],"enterprises":[34],"(SMEs),":[35],"a":[36],"convolutional":[37],"neural":[38],"network":[39],"model":[40,133,156,177],"based":[41],"on":[42,110],"transformation":[44],"(FT-CNN)":[45],"was":[46,58,122,138],"proposed":[47,134],"for":[48],"loan":[50,193],"default":[51,194],"prediction":[52,132,181,195],"SMEs.":[54,197],"Firstly,":[55],"XGBoost":[56,144],"algorithm":[57],"used":[59],"classify":[61],"original":[63,71,91],"by":[65,124],"subset":[67],"branch,":[68],"eigenvalues":[72,92],"were":[73,93],"hot":[74],"coded":[75],"according":[76],"classification":[79],"results":[80,182],"its":[82],"leaf":[83],"nodes.":[84],"The":[85,131,155],"low-order":[86],"dense":[87],"matrix":[88,98],"composed":[89],"converted":[94],"into":[95],"high-order":[96],"sparse":[97],"reduce":[100],"influence":[102],"distortion":[105],"prediction.":[111],"Then,":[112],"problem":[114,170],"unclear":[116],"features":[117],"solved":[123],"local":[126],"perception":[127],"virtue":[128],"CNN.":[130],"this":[136,176],"paper":[137],"compared":[139,148],"with":[140,149,160],"two":[141],"models":[142,159],"CNN,":[146],"SVM,":[150],"XGBoost+LR":[151],"XGBoost+SVM":[153],"models.":[154],"led":[157],"other":[158],"95%prediction":[161],"accuracy,":[162],"92.9%F1":[163],"score":[164],"91.4%AUC":[166],"score.":[167],"For":[168],"credit":[172],"SMEs,":[175],"displays":[178],"better":[179],"efficiency,":[184],"which":[185],"would":[186],"be":[187],"adapted":[188],"task":[191]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4398233580","counts_by_year":[],"updated_date":"2025-02-26T11:20:11.977341","created_date":"2024-05-24"}