{"id":"https://openalex.org/W4392356983","doi":"https://doi.org/10.1145/3650040","title":"FedCMD: A Federated Cross-modal Knowledge Distillation for Drivers\u2019 Emotion Recognition","display_name":"FedCMD: A Federated Cross-modal Knowledge Distillation for Drivers\u2019 Emotion Recognition","publication_year":2024,"publication_date":"2024-03-01","ids":{"openalex":"https://openalex.org/W4392356983","doi":"https://doi.org/10.1145/3650040"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3650040","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3650040","source":{"id":"https://openalex.org/S2492086750","display_name":"ACM Transactions on Intelligent Systems and Technology","issn_l":"2157-6904","issn":["2157-6904","2157-6912"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3650040","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060609702","display_name":"Saira Bano","orcid":"https://orcid.org/0000-0001-8126-4638"},"institutions":[{"id":"https://openalex.org/I108290504","display_name":"University of Pisa","ror":"https://ror.org/03ad39j10","country_code":"IT","type":"education","lineage":["https://openalex.org/I108290504"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Saira Bano","raw_affiliation_strings":["University of Pisa, Pisa, Italy"],"affiliations":[{"raw_affiliation_string":"University of Pisa, Pisa, Italy","institution_ids":["https://openalex.org/I108290504"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018894843","display_name":"Nicola Tonellotto","orcid":"https://orcid.org/0000-0002-7427-1001"},"institutions":[{"id":"https://openalex.org/I108290504","display_name":"University of Pisa","ror":"https://ror.org/03ad39j10","country_code":"IT","type":"education","lineage":["https://openalex.org/I108290504"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Nicola Tonellotto","raw_affiliation_strings":["University of Pisa, Pisa, Italy"],"affiliations":[{"raw_affiliation_string":"University of Pisa, Pisa, Italy","institution_ids":["https://openalex.org/I108290504"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091257734","display_name":"Pietro Cassar\u00e1","orcid":"https://orcid.org/0000-0002-3704-4133"},"institutions":[{"id":"https://openalex.org/I4210155236","display_name":"National Research Council","ror":"https://ror.org/04zaypm56","country_code":"IT","type":"nonprofit","lineage":["https://openalex.org/I4210155236"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Pietro Cassar\u00e0","raw_affiliation_strings":["National Research Council, Pisa, Pisa Italy"],"affiliations":[{"raw_affiliation_string":"National Research Council, Pisa, Pisa Italy","institution_ids":["https://openalex.org/I4210155236"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048540584","display_name":"Alberto Gotta","orcid":"https://orcid.org/0000-0002-8134-7844"},"institutions":[{"id":"https://openalex.org/I4210155236","display_name":"National Research Council","ror":"https://ror.org/04zaypm56","country_code":"IT","type":"nonprofit","lineage":["https://openalex.org/I4210155236"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Alberto Gotta","raw_affiliation_strings":["National Research Council, Pisa, Pisa Italy"],"affiliations":[{"raw_affiliation_string":"National Research Council, Pisa, Pisa Italy","institution_ids":["https://openalex.org/I4210155236"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.294,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.999886,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":84,"max":92},"biblio":{"volume":"15","issue":"3","first_page":"1","last_page":"27"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9759,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.90188336},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.67951876},{"id":"https://openalex.org/C204030448","wikidata":"https://www.wikidata.org/wiki/Q101017","display_name":"Distillation","level":2,"score":0.61774147},{"id":"https://openalex.org/C2777438025","wikidata":"https://www.wikidata.org/wiki/Q1339090","display_name":"Emotion recognition","level":2,"score":0.55218244},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46122083},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32556203},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.324611},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.32089695},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3650040","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3650040","source":{"id":"https://openalex.org/S2492086750","display_name":"ACM Transactions on Intelligent Systems and Technology","issn_l":"2157-6904","issn":["2157-6904","2157-6912"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3650040","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3650040","source":{"id":"https://openalex.org/S2492086750","display_name":"ACM Transactions on Intelligent Systems and Technology","issn_l":"2157-6904","issn":["2157-6904","2157-6912"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1593765659","https://openalex.org/W2078671978","https://openalex.org/W2140944144","https://openalex.org/W2143350951","https://openalex.org/W2161073241","https://openalex.org/W2171801645","https://openalex.org/W2343421617","https://openalex.org/W2422305492","https://openalex.org/W2513130636","https://openalex.org/W2626970695","https://openalex.org/W2789876780","https://openalex.org/W2793420802","https://openalex.org/W2799062425","https://openalex.org/W2807126412","https://openalex.org/W2886300652","https://openalex.org/W2899804003","https://openalex.org/W2931168649","https://openalex.org/W2941578813","https://openalex.org/W2962770129","https://openalex.org/W2963819344","https://openalex.org/W3002833466","https://openalex.org/W3020487153","https://openalex.org/W3082819019","https://openalex.org/W3100506742","https://openalex.org/W3107847925","https://openalex.org/W3117931516","https://openalex.org/W3140428646","https://openalex.org/W3143835353","https://openalex.org/W3166272535","https://openalex.org/W3205390357","https://openalex.org/W3211199052","https://openalex.org/W3216153120","https://openalex.org/W4206125254","https://openalex.org/W4220944666","https://openalex.org/W4254066965","https://openalex.org/W4280530517","https://openalex.org/W4281943365","https://openalex.org/W4364361418","https://openalex.org/W753847829"],"related_works":["https://openalex.org/W4387914125","https://openalex.org/W3160965418","https://openalex.org/W3126677997","https://openalex.org/W3105646692","https://openalex.org/W3026162553","https://openalex.org/W2768175398","https://openalex.org/W2379392295","https://openalex.org/W2344382886","https://openalex.org/W19111321","https://openalex.org/W1610857240"],"abstract_inverted_index":{"Emotion":[0],"recognition":[1,25,139],"has":[2],"attracted":[3],"a":[4,62,72,106,134,161,198,204],"lot":[5],"of":[6,56,118],"interest":[7],"in":[8,11,144,211,247,272],"recent":[9,35],"years":[10],"various":[12],"application":[13],"areas":[14],"such":[15],"as":[16,61,160],"healthcare":[17],"and":[18,132,136,226,244,255,258],"autonomous":[19],"driving.":[20],"Existing":[21],"approaches":[22],"to":[23,99,104,181,238,269],"emotion":[24,47,60,138],"are":[26,37],"based":[27,76,193],"on":[28,77,194,219],"visual,":[29],"speech,":[30],"or":[31],"psychophysiological":[32],"signals.":[33],"However,":[34],"studies":[36],"looking":[38],"at":[39],"multimodal":[40,68,221],"techniques":[41],"that":[42,95,121,197,233],"combine":[43],"different":[44,250],"modalities":[45],"for":[46,127,148,164],"recognition.":[48],"In":[49],"this":[50],"work,":[51],"we":[52,168],"address":[53],"the":[54,58,178,182,195,220,276],"problem":[55],"recognizing":[57],"user\u2019s":[59],"driver":[63,171],"from":[64,177],"unlabeled":[65,153],"videos":[66],"using":[67,157,186],"techniques.":[69],"We":[70],"propose":[71],"collaborative":[73,91],"training":[74],"method":[75],"cross-modal":[78,187],"distillation,":[79],"i.e.,":[80],"\u201cFedCMD\u201d":[81,215],"(Federated":[82],"Cross-Modal":[83],"Distillation).":[84],"Federated":[85],"Learning":[86],"(FL)":[87],"is":[88,120,125,146,192,217,236,265],"an":[89],"emerging":[90],"decentralized":[92],"learning":[93],"technique":[94],"allows":[96],"each":[97,149,165],"participant":[98],"train":[100],"their":[101,113],"model":[102,110,143,264],"locally":[103],"build":[105],"better":[107,273],"generalized":[108],"global":[109],"without":[111],"sharing":[112],"data.":[114],"The":[115,141,189,213],"main":[116],"advantage":[117],"FL":[119,145],"only":[122],"local":[123,142,166],"data":[124,155,159],"used":[126],"training,":[128],"thus":[129],"maintaining":[130],"privacy":[131],"providing":[133],"secure":[135],"efficient":[137],"system.":[140],"trained":[147],"vehicle":[150],"device":[151],"with":[152,207,252],"video":[154],"by":[156,185,203],"sensor":[158,179,205],"proxy.":[162],"Specifically,":[163],"model,":[167],"show":[169,232],"how":[170],"emotional":[172,200],"annotations":[173],"can":[174],"be":[175],"transferred":[176],"domain":[180,184],"visual":[183],"distillation.":[188],"key":[190],"idea":[191],"observation":[196],"driver\u2019s":[199],"state":[201],"indicated":[202],"correlates":[206],"facial":[208],"expressions":[209],"shown":[210],"videos.":[212],"proposed":[214],"approach":[216,235],"tested":[218],"dataset":[222],"\u201cBioVid":[223],"Emo":[224],"DB\u201d":[225],"achieves":[227],"state-of-the-art":[228],"performance.":[229],"Experimental":[230],"results":[231],"our":[234,263],"robust":[237,268],"non-identically":[239],"distributed":[240],"data,":[241,260],"achieving":[242],"96.67%":[243],"90.83%":[245],"accuracy":[246],"classifying":[248],"five":[249],"emotions":[251],"IID":[253],"(independently":[254],"identically":[256],"distributed)":[257],"non-IID":[259],"respectively.":[261],"Moreover,":[262],"much":[266],"more":[267],"overfitting,":[270],"resulting":[271],"generalization":[274],"than":[275],"other":[277],"existing":[278],"methods.":[279]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392356983","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-02T07:12:58.089633","created_date":"2024-03-05"}