{"id":"https://openalex.org/W4399513083","doi":"https://doi.org/10.1145/3644815.3644941","title":"A Combinatorial Approach to Hyperparameter Optimization","display_name":"A Combinatorial Approach to Hyperparameter Optimization","publication_year":2024,"publication_date":"2024-04-14","ids":{"openalex":"https://openalex.org/W4399513083","doi":"https://doi.org/10.1145/3644815.3644941"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3644815.3644941","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3644815.3644941","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3644815.3644941","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034361110","display_name":"Krishna Khadka","orcid":"https://orcid.org/0009-0000-0672-5107"},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"education","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Krishna Khadka","raw_affiliation_strings":["University of Texas at Arlington, Arlington, Texas, USA"],"affiliations":[{"raw_affiliation_string":"University of Texas at Arlington, Arlington, Texas, USA","institution_ids":["https://openalex.org/I189196454"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089497572","display_name":"Jaganmohan Chandrasekaran","orcid":"https://orcid.org/0000-0001-8694-4296"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jaganmohan Chandrasekaran","raw_affiliation_strings":["Virginia Tech, Blacksburg, Virginia, USA"],"affiliations":[{"raw_affiliation_string":"Virginia Tech, Blacksburg, Virginia, USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060631912","display_name":"Yu Lei","orcid":"https://orcid.org/0000-0002-1069-5980"},"institutions":[{"id":"https://openalex.org/I189196454","display_name":"The University of Texas at Arlington","ror":"https://ror.org/019kgqr73","country_code":"US","type":"education","lineage":["https://openalex.org/I189196454"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yu Lei","raw_affiliation_strings":["University of Texas at Arlington, Arlington, Texas, USA"],"affiliations":[{"raw_affiliation_string":"University of Texas at Arlington, Arlington, Texas, USA","institution_ids":["https://openalex.org/I189196454"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061215075","display_name":"Raghu N. Kacker","orcid":"https://orcid.org/0000-0002-7666-3391"},"institutions":[{"id":"https://openalex.org/I1321296531","display_name":"National Institute of Standards and Technology","ror":"https://ror.org/05xpvk416","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Raghu N. Kacker","raw_affiliation_strings":["National Institute of Standards and Technology, Gaithersburg, Maryland, USA"],"affiliations":[{"raw_affiliation_string":"National Institute of Standards and Technology, Gaithersburg, Maryland, USA","institution_ids":["https://openalex.org/I1321296531"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011985891","display_name":"D. Richard Kuhn","orcid":"https://orcid.org/0000-0003-0050-1596"},"institutions":[{"id":"https://openalex.org/I1321296531","display_name":"National Institute of Standards and Technology","ror":"https://ror.org/05xpvk416","country_code":"US","type":"government","lineage":["https://openalex.org/I1321296531","https://openalex.org/I1343035065"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"D. Richard Kuhn","raw_affiliation_strings":["National Institute of Standards and Technology, Gaithersburg, Maryland, USA"],"affiliations":[{"raw_affiliation_string":"National Institute of Standards and Technology, Gaithersburg, Maryland, USA","institution_ids":["https://openalex.org/I1321296531"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.231,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.999975,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":96},"biblio":{"volume":"13","issue":null,"first_page":"140","last_page":"149"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.93937826},{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian optimization","score":0.73931175},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.650984},{"id":"https://openalex.org/keywords/particle-swarm-optimization","display_name":"Particle Swarm Optimization","score":0.532081},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.525302},{"id":"https://openalex.org/keywords/multi-objective-optimization","display_name":"Multi-Objective Optimization","score":0.519887},{"id":"https://openalex.org/keywords/random-search","display_name":"Random search","score":0.4446298}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.93937826},{"id":"https://openalex.org/C10485038","wikidata":"https://www.wikidata.org/wiki/Q48996162","display_name":"Hyperparameter optimization","level":3,"score":0.8863942},{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.73931175},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73524696},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6736535},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.57508403},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5113277},{"id":"https://openalex.org/C187691185","wikidata":"https://www.wikidata.org/wiki/Q2020720","display_name":"Grid","level":2,"score":0.47961462},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.45218652},{"id":"https://openalex.org/C126661757","wikidata":"https://www.wikidata.org/wiki/Q4925641","display_name":"Random search","level":2,"score":0.4446298},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37691492},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2367002},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15143728},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.08123195},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3644815.3644941","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3644815.3644941","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3644815.3644941","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3644815.3644941","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W142920396","https://openalex.org/W2014973576","https://openalex.org/W2097998348","https://openalex.org/W2101234009","https://openalex.org/W2122203914","https://openalex.org/W2126717908","https://openalex.org/W2194775991","https://openalex.org/W2210969396","https://openalex.org/W2295598076","https://openalex.org/W2314046539","https://openalex.org/W2407212869","https://openalex.org/W2970146327","https://openalex.org/W3013330736","https://openalex.org/W3045004532","https://openalex.org/W3099802519","https://openalex.org/W3123920941","https://openalex.org/W3204597451","https://openalex.org/W4313341957","https://openalex.org/W4320016058","https://openalex.org/W4360619614"],"related_works":["https://openalex.org/W4286902601","https://openalex.org/W3206613651","https://openalex.org/W3169687406","https://openalex.org/W3103707007","https://openalex.org/W2963815651","https://openalex.org/W2783694856","https://openalex.org/W2752331852","https://openalex.org/W2556522401","https://openalex.org/W2200000192","https://openalex.org/W1809990924"],"abstract_inverted_index":{"In":[0],"machine":[1],"learning,":[2],"hyperparameter":[3],"optimization":[4],"(HPO)":[5],"is":[6],"essential":[7],"for":[8,74,91,141],"effective":[9],"model":[10,15,20,128],"training":[11],"and":[12,27,44,58,72,111,130],"significantly":[13,131],"impacts":[14],"performance.":[16],"Hyperparameters":[17],"are":[18,28],"predefined":[19],"settings":[21],"which":[22],"fine-tune":[23],"the":[24,108,124,142],"model's":[25],"behavior":[26],"critical":[29],"to":[30,87],"modeling":[31],"complex":[32],"data":[33],"patterns.":[34],"Traditional":[35],"HPO":[36,139],"approaches":[37,64,140],"such":[38],"as":[39,55],"Grid":[40],"Search,":[41,43],"Random":[42],"Bayesian":[45],"Optimization":[46],"have":[47],"been":[48],"widely":[49],"used":[50,90],"in":[51,61,145],"this":[52],"field.":[53],"However,":[54],"datasets":[56],"grow":[57],"models":[59,143],"increase":[60],"complexity,":[62],"these":[63],"often":[65],"require":[66],"a":[67,79,95],"significant":[68],"amount":[69],"of":[70,126],"time":[71],"resources":[73],"HPO.":[75,103],"This":[76],"research":[77],"introduces":[78],"novel":[80],"approach":[81,86,122],"using":[82],"t-way":[83,101],"testing---a":[84],"combinatorial":[85],"software":[88],"testing":[89,105],"identifying":[92],"faults":[93],"with":[94],"test":[96],"set":[97],"that":[98,120],"covers":[99,113],"all":[100],"interactions---for":[102],"T-way":[104],"substantially":[106],"narrows":[107],"search":[109],"space":[110],"effectively":[112],"parameter":[114],"interactions.":[115],"Our":[116],"experimental":[117],"results":[118],"show":[119],"our":[121,146],"reduces":[123],"number":[125],"necessary":[127],"evaluations":[129],"cuts":[132],"computational":[133],"expenses":[134],"while":[135],"still":[136],"outperforming":[137],"traditional":[138],"studied":[144],"experiments.":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4399513083","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-12-04T20:44:18.998272","created_date":"2024-06-12"}