{"id":"https://openalex.org/W4392605606","doi":"https://doi.org/10.1145/3640824.3640830","title":"Deep Learning-Based Wearable Human Activity Recognition: Model and Performance Analysis","display_name":"Deep Learning-Based Wearable Human Activity Recognition: Model and Performance Analysis","publication_year":2024,"publication_date":"2024-01-26","ids":{"openalex":"https://openalex.org/W4392605606","doi":"https://doi.org/10.1145/3640824.3640830"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3640824.3640830","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032010087","display_name":"Xinyu Song","orcid":"https://orcid.org/0009-0008-6535-0323"},"institutions":[{"id":"https://openalex.org/I149240348","display_name":"Jilin Normal University","ror":"https://ror.org/00xtsag93","country_code":"CN","type":"education","lineage":["https://openalex.org/I149240348"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinyu Song","raw_affiliation_strings":["Jilin Normal University, China"],"affiliations":[{"raw_affiliation_string":"Jilin Normal University, China","institution_ids":["https://openalex.org/I149240348"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015774114","display_name":"Hongyu Sun","orcid":"https://orcid.org/0000-0002-9182-4827"},"institutions":[{"id":"https://openalex.org/I149240348","display_name":"Jilin Normal University","ror":"https://ror.org/00xtsag93","country_code":"CN","type":"education","lineage":["https://openalex.org/I149240348"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongyu Sun","raw_affiliation_strings":["Jilin Normal University, China"],"affiliations":[{"raw_affiliation_string":"Jilin Normal University, China","institution_ids":["https://openalex.org/I149240348"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000941422","display_name":"Yanhua Dong","orcid":"https://orcid.org/0000-0001-8795-8366"},"institutions":[{"id":"https://openalex.org/I149240348","display_name":"Jilin Normal University","ror":"https://ror.org/00xtsag93","country_code":"CN","type":"education","lineage":["https://openalex.org/I149240348"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanhua Dong","raw_affiliation_strings":["Jilin Normal University, China"],"affiliations":[{"raw_affiliation_string":"Jilin Normal University, China","institution_ids":["https://openalex.org/I149240348"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026315723","display_name":"Ying Pei","orcid":"https://orcid.org/0009-0000-3999-4530"},"institutions":[{"id":"https://openalex.org/I49232843","display_name":"Changchun University","ror":"https://ror.org/02an57k10","country_code":"CN","type":"education","lineage":["https://openalex.org/I49232843"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ying Pei","raw_affiliation_strings":["Changchun Sci-Tech University, China"],"affiliations":[{"raw_affiliation_string":"Changchun Sci-Tech University, China","institution_ids":["https://openalex.org/I49232843"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100328355","display_name":"Shuai Wang","orcid":"https://orcid.org/0000-0003-4046-6123"},"institutions":[{"id":"https://openalex.org/I149240348","display_name":"Jilin Normal University","ror":"https://ror.org/00xtsag93","country_code":"CN","type":"education","lineage":["https://openalex.org/I149240348"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuai Wang","raw_affiliation_strings":["Jilin Normal University, China"],"affiliations":[{"raw_affiliation_string":"Jilin Normal University, China","institution_ids":["https://openalex.org/I149240348"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"30","last_page":"36"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9603,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/wearable-technology","display_name":"Wearable Technology","score":0.4822241},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.41117138}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7300569},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.6939763},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5039262},{"id":"https://openalex.org/C54290928","wikidata":"https://www.wikidata.org/wiki/Q4845080","display_name":"Wearable technology","level":3,"score":0.4822241},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4551187},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.41117138},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.37526456},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.10126844}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3640824.3640830","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1689711448","https://openalex.org/W1969307352","https://openalex.org/W1975747104","https://openalex.org/W2108328714","https://openalex.org/W2116436990","https://openalex.org/W2150338977","https://openalex.org/W2163413582","https://openalex.org/W2752561456","https://openalex.org/W2789876780","https://openalex.org/W2956146309","https://openalex.org/W3095373330","https://openalex.org/W3110489115","https://openalex.org/W3152403802","https://openalex.org/W3216463631","https://openalex.org/W4287219773"],"related_works":["https://openalex.org/W4250401876","https://openalex.org/W3105278570","https://openalex.org/W3090300519","https://openalex.org/W2943851981","https://openalex.org/W2907667791","https://openalex.org/W2582769230","https://openalex.org/W2566526749","https://openalex.org/W2514492205","https://openalex.org/W2117913171","https://openalex.org/W2012157391"],"abstract_inverted_index":{"Mobile":[0],"wearable":[1,79],"sensors,":[2],"with":[3],"advantages":[4],"such":[5],"as":[6,130],"real-time":[7],"monitoring,":[8],"portability,":[9],"data":[10],"sharing":[11],"and":[12,17,30,45,51,61,105,127,155,164],"connectivity,":[13],"increased":[14],"user":[15],"engagement,":[16],"multifunctionality,":[18],"have":[19],"gained":[20],"significant":[21],"attention":[22],"from":[23],"researchers.":[24],"Their":[25],"application":[26,165],"in":[27,40,81],"identifying,":[28],"interpreting,":[29],"evaluating":[31],"human":[32,85],"behaviors":[33],"is":[34],"becoming":[35],"increasingly":[36],"prominent.":[37],"However,":[38],"inconsistencies":[39],"experimental":[41,133,162],"conditions":[42],"among":[43],"researchers":[44],"the":[46,57,82,110,113,124,142,148],"complex":[47,161],"dependencies":[48],"between":[49],"components":[50],"modules":[52],"within":[53],"systems":[54],"may":[55],"impact":[56],"reproducibility,":[58],"comparability,":[59],"stability,":[60],"maintainability":[62],"of":[63,84],"studies.":[64],"To":[65,108],"address":[66],"these":[67],"challenges,":[68],"this":[69],"paper":[70],"presents":[71],"a":[72,90],"unified":[73],"solution":[74],"for":[75],"research":[76],"on":[77,118],"mobile":[78],"sensors":[80],"context":[83],"behavior.":[86],"Specifically,":[87],"it":[88,150],"introduces":[89],"middleware":[91,143],"model":[92,96,103,144],"called":[93],"HAR-IMB.":[94],"This":[95],"encompasses":[97],"input":[98],"sensor":[99],"data,":[100],"feature":[101],"transformation,":[102],"selection,":[104],"prediction":[106],"results.":[107],"substantiate":[109],"model's":[111],"efficacy,":[112],"study":[114],"conducts":[115],"performance":[116],"analyses":[117],"different":[119],"deep":[120],"learning":[121],"models":[122],"using":[123],"WISDM":[125],"dataset":[126,129],"UCI-HAR":[128],"examples.":[131],"The":[132],"results":[134],"demonstrate":[135],"promising":[136],"outcomes":[137],"across":[138],"various":[139],"models.":[140],"Furthermore,":[141],"exhibits":[145],"scalability.":[146],"In":[147],"future,":[149],"can":[151],"be":[152],"further":[153],"enhanced":[154],"refined":[156],"to":[157,159],"adapt":[158],"more":[160],"environments":[163],"scenarios.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392605606","counts_by_year":[],"updated_date":"2025-01-13T05:54:10.442584","created_date":"2024-03-09"}