{"id":"https://openalex.org/W4389374035","doi":"https://doi.org/10.1145/3628797.3629014","title":"ConvTransNet: Merging Convolution with Transformer to Enhance Polyp Segmentation","display_name":"ConvTransNet: Merging Convolution with Transformer to Enhance Polyp Segmentation","publication_year":2023,"publication_date":"2023-12-06","ids":{"openalex":"https://openalex.org/W4389374035","doi":"https://doi.org/10.1145/3628797.3629014"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3628797.3629014","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031094197","display_name":"Trong-Hieu Nguyen-Mau","orcid":"https://orcid.org/0000-0003-2823-3861"},"institutions":[{"id":"https://openalex.org/I23582244","display_name":"Ho Chi Minh City University of Science","ror":"https://ror.org/05jfbgm49","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023","https://openalex.org/I23582244"]},{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Trong-Hieu Nguyen-Mau","raw_affiliation_strings":["University of Science, VNU-HCM, Viet Nam"],"affiliations":[{"raw_affiliation_string":"University of Science, VNU-HCM, Viet Nam","institution_ids":["https://openalex.org/I23582244","https://openalex.org/I123565023"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075898211","display_name":"Trong-Vu Hoang","orcid":"https://orcid.org/0000-0001-7367-1401"},"institutions":[{"id":"https://openalex.org/I23582244","display_name":"Ho Chi Minh City University of Science","ror":"https://ror.org/05jfbgm49","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023","https://openalex.org/I23582244"]},{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Trong-Vu Hoang","raw_affiliation_strings":["University of Science, VNU-HCM, Viet Nam"],"affiliations":[{"raw_affiliation_string":"University of Science, VNU-HCM, Viet Nam","institution_ids":["https://openalex.org/I23582244","https://openalex.org/I123565023"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036616073","display_name":"Hai-Dang Nguyen","orcid":"https://orcid.org/0000-0003-0888-8908"},"institutions":[{"id":"https://openalex.org/I23582244","display_name":"Ho Chi Minh City University of Science","ror":"https://ror.org/05jfbgm49","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023","https://openalex.org/I23582244"]},{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Hai-Dang Nguyen","raw_affiliation_strings":["University of Science, VNU-HCM, Viet Nam"],"affiliations":[{"raw_affiliation_string":"University of Science, VNU-HCM, Viet Nam","institution_ids":["https://openalex.org/I23582244","https://openalex.org/I123565023"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053495766","display_name":"Minh\u2013Triet Tran","orcid":"https://orcid.org/0000-0003-3046-3041"},"institutions":[{"id":"https://openalex.org/I123565023","display_name":"Vietnam National University Ho Chi Minh City","ror":"https://ror.org/00waaqh38","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023"]},{"id":"https://openalex.org/I23582244","display_name":"Ho Chi Minh City University of Science","ror":"https://ror.org/05jfbgm49","country_code":"VN","type":"education","lineage":["https://openalex.org/I123565023","https://openalex.org/I23582244"]}],"countries":["VN"],"is_corresponding":false,"raw_author_name":"Minh-Triet Tran","raw_affiliation_strings":["University of Science, VNU-HCM, Viet Nam"],"affiliations":[{"raw_affiliation_string":"University of Science, VNU-HCM, Viet Nam","institution_ids":["https://openalex.org/I123565023","https://openalex.org/I23582244"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"631","last_page":"638"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.6763504}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7605629},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7408035},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.6763504},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.65153784},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.64069027},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.582892},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5217598},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5066934},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.4694072},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43855578},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.43338442},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.41323966},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.109840274},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3628797.3629014","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W2021088830","https://openalex.org/W2194775991","https://openalex.org/W2285968993","https://openalex.org/W2302255633","https://openalex.org/W2549139847","https://openalex.org/W2737258237","https://openalex.org/W2884436604","https://openalex.org/W2963446712","https://openalex.org/W2979515228","https://openalex.org/W2999580839","https://openalex.org/W3007268491","https://openalex.org/W3015788359","https://openalex.org/W3092344722","https://openalex.org/W3131500599","https://openalex.org/W3138516171","https://openalex.org/W3139633126","https://openalex.org/W3175515048","https://openalex.org/W3200667602","https://openalex.org/W3202263958","https://openalex.org/W3211490618","https://openalex.org/W4214493665","https://openalex.org/W4312443924"],"related_works":["https://openalex.org/W4390494008","https://openalex.org/W4285411112","https://openalex.org/W2949601986","https://openalex.org/W2788972299","https://openalex.org/W2729981612","https://openalex.org/W2560215812","https://openalex.org/W2521347458","https://openalex.org/W2498789492","https://openalex.org/W2171299904","https://openalex.org/W2085033728"],"abstract_inverted_index":{"Colonoscopy":[0],"is":[1],"widely":[2],"acknowledged":[3],"as":[4,19,144,151],"the":[5,22,32,37,51,91,99,118,136,169,179],"most":[6],"efficient":[7],"screening":[8],"method":[9],"for":[10],"detecting":[11],"colorectal":[12],"cancer":[13],"and":[14,36,56,146,165,189,212],"its":[15,210],"early":[16],"stages,":[17],"such":[18],"polyps.":[20],"However,":[21],"procedure":[23],"faces":[24],"challenges":[25],"with":[26,124],"high":[27],"miss":[28],"rates":[29],"due":[30],"to":[31,85,97,198],"heterogeneity":[33],"of":[34,53,121,187,193],"polyps":[35],"dependence":[38],"on":[39,178,201],"individual":[40],"observers.":[41],"Therefore,":[42],"several":[43],"deep":[44,113],"learning":[45],"systems":[46],"have":[47,64,81],"been":[48],"proposed":[49],"considering":[50],"criticality":[52],"polyp":[54],"detection":[55],"segmentation":[57],"in":[58,67],"clinical":[59],"practices.":[60],"While":[61],"existing":[62],"approaches":[63],"shown":[65],"advancements":[66],"their":[68],"results,":[69,208],"they":[70],"still":[71],"possess":[72],"important":[73],"limitations.":[74],"Convolutional":[75],"Neural":[76],"Network":[77],"-":[78],"based":[79],"methods":[80,95,200],"a":[82,111,129,184],"restricted":[83],"ability":[84],"leverage":[86,135],"long-range":[87],"semantic":[88],"dependencies.":[89],"On":[90],"other":[92],"hand,":[93],"transformer-based":[94],"struggle":[96],"learn":[98],"local":[100,166],"relationships":[101,167],"among":[102],"pixels.":[103],"To":[104],"address":[105],"this":[106],"issue,":[107],"we":[108,134],"introduce":[109],"ConvTransNet,":[110],"novel":[112],"neural":[114],"network":[115],"that":[116],"combines":[117],"hierarchical":[119],"representation":[120],"vision":[122],"transformers":[123],"comprehensive":[125],"features":[126,137,156],"extracted":[127,138],"from":[128,139],"convolutional":[130],"backbone.":[131],"In":[132],"particular,":[133],"two":[140],"powerful":[141],"backbones,":[142],"ConvNeXt":[143],"CNN-based":[145],"Dual":[147],"Attention":[148],"Vision":[149],"Transformer":[150],"transformer-based.":[152],"By":[153],"incorporating":[154],"multi-stage":[155],"through":[157],"residual":[158],"blocks,":[159],"ConvTransNet":[160,174,204],"effectively":[161],"captures":[162],"both":[163],"global":[164],"within":[168],"image.":[170],"Through":[171],"extensive":[172],"experiments,":[173],"demonstrates":[175],"impressive":[176],"performance":[177],"Kvasir-SEG":[180],"dataset":[181],"by":[182],"achieving":[183],"Dice":[185],"coefficient":[186],"0.928":[188],"an":[190],"IOU":[191],"score":[192],"0.882.":[194],"Additionally,":[195],"when":[196],"compared":[197],"previous":[199],"various":[202],"datasets,":[203],"consistently":[205],"achieves":[206],"competitive":[207],"showcasing":[209],"effectiveness":[211],"potential.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389374035","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-05T06:53:05.101465","created_date":"2023-12-07"}