{"id":"https://openalex.org/W4387298128","doi":"https://doi.org/10.1145/3607199.3607218","title":"Exploring Clustered Federated Learning\u2019s Vulnerability against Property Inference Attack","display_name":"Exploring Clustered Federated Learning\u2019s Vulnerability against Property Inference Attack","publication_year":2023,"publication_date":"2023-10-03","ids":{"openalex":"https://openalex.org/W4387298128","doi":"https://doi.org/10.1145/3607199.3607218"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3607199.3607218","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100737623","display_name":"Hyunjun Kim","orcid":"https://orcid.org/0000-0003-3886-0586"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Hyunjun Kim","raw_affiliation_strings":["Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020736659","display_name":"Yungi Cho","orcid":"https://orcid.org/0000-0003-1297-8586"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yungi Cho","raw_affiliation_strings":["Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101410939","display_name":"Younghan Lee","orcid":"https://orcid.org/0000-0001-8414-966X"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Younghan Lee","raw_affiliation_strings":["Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008547463","display_name":"Ho Bae","orcid":"https://orcid.org/0000-0002-5238-3547"},"institutions":[{"id":"https://openalex.org/I138925566","display_name":"Ewha Womans University","ror":"https://ror.org/053fp5c05","country_code":"KR","type":"education","lineage":["https://openalex.org/I138925566"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Ho Bae","raw_affiliation_strings":["Department of Cyber Security, Ewha Womans University, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Cyber Security, Ewha Womans University, Republic of Korea","institution_ids":["https://openalex.org/I138925566"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082524666","display_name":"Yunheung Paek","orcid":"https://orcid.org/0000-0002-6412-2926"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Yunheung Paek","raw_affiliation_strings":["Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Republic of Korea","institution_ids":["https://openalex.org/I139264467"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":69},"biblio":{"volume":"33","issue":null,"first_page":"236","last_page":"249"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Advanced Cryptographic Schemes and Protocols","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Optimization Methods in Machine Learning","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.637541},{"id":"https://openalex.org/keywords/vulnerability","display_name":"Vulnerability (computing)","score":0.59867656},{"id":"https://openalex.org/keywords/membership-inference-attacks","display_name":"Membership Inference Attacks","score":0.528016},{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.523355}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.719192},{"id":"https://openalex.org/C189950617","wikidata":"https://www.wikidata.org/wiki/Q937228","display_name":"Property (philosophy)","level":2,"score":0.6440325},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6421187},{"id":"https://openalex.org/C95713431","wikidata":"https://www.wikidata.org/wiki/Q631425","display_name":"Vulnerability (computing)","level":2,"score":0.59867656},{"id":"https://openalex.org/C167063184","wikidata":"https://www.wikidata.org/wiki/Q1400839","display_name":"Vulnerability assessment","level":3,"score":0.49946308},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36551043},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.33129635},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C137176749","wikidata":"https://www.wikidata.org/wiki/Q4105337","display_name":"Psychological resilience","level":2,"score":0.0},{"id":"https://openalex.org/C542102704","wikidata":"https://www.wikidata.org/wiki/Q183257","display_name":"Psychotherapist","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3607199.3607218","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.78}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1557833142","https://openalex.org/W2473418344","https://openalex.org/W2535690855","https://openalex.org/W2897830718","https://openalex.org/W2963456518","https://openalex.org/W2983140679","https://openalex.org/W3172312230","https://openalex.org/W3198939852","https://openalex.org/W4200631596","https://openalex.org/W4285876308","https://openalex.org/W4286421857","https://openalex.org/W4312699393","https://openalex.org/W4319865990"],"related_works":["https://openalex.org/W3157230915","https://openalex.org/W3118510577","https://openalex.org/W2947584067","https://openalex.org/W2370114625","https://openalex.org/W230721595","https://openalex.org/W2280562859","https://openalex.org/W2062873522","https://openalex.org/W1883246888","https://openalex.org/W1756374135","https://openalex.org/W1496728123"],"abstract_inverted_index":{"Clustered":[0],"federated":[1,12],"learning":[2,13],"(CFL)":[3],"is":[4,147],"an":[5,164],"advanced":[6],"technique":[7],"in":[8,56,70,85,125,154,192,249],"the":[9,17,38,52,64,80,88,104,108,118,141,157,174,185,196,203,217],"field":[10],"of":[11,19,40,54,67,82,107,121,156,187,205],"(FL)":[14],"that":[15,101,140,151,183,202,225,240],"addresses":[16],"issue":[18],"catastrophic":[20],"forgetting":[21],"caused":[22],"by":[23,33,127,210],"non-independent":[24],"and":[25,43,133,258],"identically":[26],"distributed":[27],"(non-IID)":[28],"datasets.":[29],"CFL":[30,55,71,126,146,171,206],"achieves":[31],"this":[32,114],"clustering":[34],"clients":[35],"based":[36],"on":[37,145,152],"similarity":[39],"their":[41],"datasets":[42],"training":[44],"a":[45,180,232,246,253],"global":[46,109],"model":[47],"for":[48,170],"each":[49],"cluster.":[50],"Despite":[51],"effectiveness":[53],"mitigating":[57],"performance":[58,144,194],"degradation":[59],"resulting":[60,191],"from":[61,103],"non-IID":[62],"datasets,":[63],"potential":[65,119],"risk":[66,81,120],"privacy":[68,83,213,257],"leakages":[69,84],"has":[72],"not":[73],"been":[74],"thoroughly":[75],"studied.":[76],"Previous":[77],"work":[78],"evaluated":[79],"FL":[86,153,229],"using":[87],"property":[89,123],"inference":[90],"attack":[91,158,175],"(PIA),":[92],"which":[93,222],"extracts":[94],"information":[95],"about":[96],"unintended":[97,122],"properties":[98],"(i.e.,":[99],"attributes":[100],"differ":[102],"target":[105],"attribute":[106],"model's":[110],"main":[111],"task).":[112],"In":[113],"paper,":[115],"we":[116,162,200],"explore":[117],"leakage":[124],"subjecting":[128],"it":[129],"to":[130,172,228,252],"both":[131],"passive":[132,142],"active":[134,166],"PIAs.":[135],"Our":[136,177],"empirical":[137,237],"analysis":[138],"shows":[139],"PIA":[143,167],"substantially":[148],"better":[149,193,254],"than":[150,195],"terms":[155],"AUC":[159],"score.":[160],"Moreover,":[161],"propose":[163],"enhanced":[165],"method":[168,178],"tailored":[169],"improve":[173],"performance.":[176],"introduces":[179],"scale-up":[181],"parameter":[182],"amplifies":[184],"impact":[186],"malicious":[188],"local":[189],"updates,":[190],"previous":[197,220],"technique.":[198],"Furthermore,":[199],"demonstrate":[201],"vulnerability":[204],"can":[207,230,242],"be":[208,243],"alleviated":[209],"applying":[211,226],"differential":[212],"(DP)":[214],"mechanisms":[215],"at":[216],"client-level.":[218],"Unlike":[219],"works,":[221],"have":[223],"shown":[224],"DP":[227,241],"induce":[231],"high":[233],"utility":[234],"loss,":[235],"our":[236],"results":[238],"indicate":[239],"used":[244],"as":[245],"defense":[247],"mechanism":[248],"CFL,":[250],"leading":[251],"trade-off":[255],"between":[256],"utility.":[259]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387298128","counts_by_year":[],"updated_date":"2024-11-12T17:54:45.074262","created_date":"2023-10-04"}