{"id":"https://openalex.org/W4387298135","doi":"https://doi.org/10.1145/3607199.3607204","title":"Efficient Membership Inference Attacks against Federated Learning via Bias Differences","display_name":"Efficient Membership Inference Attacks against Federated Learning via Bias Differences","publication_year":2023,"publication_date":"2023-10-03","ids":{"openalex":"https://openalex.org/W4387298135","doi":"https://doi.org/10.1145/3607199.3607204"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3607199.3607204","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103204418","display_name":"Liwei Zhang","orcid":"https://orcid.org/0009-0002-5581-6552"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liwei Zhang","raw_affiliation_strings":["Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101967550","display_name":"Linghui Li","orcid":"https://orcid.org/0000-0002-7614-3142"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Linghui Li","raw_affiliation_strings":["Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100673949","display_name":"Xiaoyong Li","orcid":"https://orcid.org/0000-0001-5597-9306"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyong Li","raw_affiliation_strings":["Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050671370","display_name":"Binsi Cai","orcid":"https://orcid.org/0000-0002-7084-5952"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Binsi Cai","raw_affiliation_strings":["Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075909729","display_name":"Yali Gao","orcid":"https://orcid.org/0000-0003-0458-8481"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yali Gao","raw_affiliation_strings":["Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082412932","display_name":"Ruobin Dou","orcid":"https://orcid.org/0009-0006-3638-7966"},"institutions":[{"id":"https://openalex.org/I180662265","display_name":"China Mobile (China)","ror":"https://ror.org/05gftfe97","country_code":"CN","type":"company","lineage":["https://openalex.org/I180662265"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ruobin Dou","raw_affiliation_strings":["China Mobile Group Tianjin Co.,Itd., China"],"affiliations":[{"raw_affiliation_string":"China Mobile Group Tianjin Co.,Itd., China","institution_ids":["https://openalex.org/I180662265"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021393795","display_name":"Luying Chen","orcid":"https://orcid.org/0009-0008-3845-8128"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Luying Chen","raw_affiliation_strings":["HAOHAN Data Technology Co.,ltd, China"],"affiliations":[{"raw_affiliation_string":"HAOHAN Data Technology Co.,ltd, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.601,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.492949,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"222","last_page":"235"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Healthcare and Education","score":0.9232,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/news-aggregator","display_name":"News aggregator","score":0.49556267},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.4709837}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.8674828},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74958587},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6223172},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58426076},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5602054},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.5324028},{"id":"https://openalex.org/C180505990","wikidata":"https://www.wikidata.org/wiki/Q498267","display_name":"News aggregator","level":2,"score":0.49556267},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47662795},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.4709837},{"id":"https://openalex.org/C158600405","wikidata":"https://www.wikidata.org/wiki/Q5054566","display_name":"Causal inference","level":2,"score":0.43995905},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.1595014},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.087562144},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3607199.3607204","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W2051267297","https://openalex.org/W2101095383","https://openalex.org/W2194775991","https://openalex.org/W2473418344","https://openalex.org/W2535690855","https://openalex.org/W2736317519","https://openalex.org/W2798729263","https://openalex.org/W2897830718","https://openalex.org/W2963163009","https://openalex.org/W2963446712","https://openalex.org/W2963456518","https://openalex.org/W2963952467","https://openalex.org/W3034491749","https://openalex.org/W3088611441","https://openalex.org/W3096692244","https://openalex.org/W3100213383","https://openalex.org/W3103245149","https://openalex.org/W3103291281","https://openalex.org/W3104224589","https://openalex.org/W3126729338","https://openalex.org/W3135148659","https://openalex.org/W3138815606","https://openalex.org/W3139248306","https://openalex.org/W3214437258","https://openalex.org/W4206919831","https://openalex.org/W4207073300","https://openalex.org/W4214858327","https://openalex.org/W4283790681","https://openalex.org/W4285196615","https://openalex.org/W4308410741"],"related_works":["https://openalex.org/W962287279","https://openalex.org/W4280593074","https://openalex.org/W4280588203","https://openalex.org/W4280503768","https://openalex.org/W4206057490","https://openalex.org/W3092831610","https://openalex.org/W3036238356","https://openalex.org/W2767445978","https://openalex.org/W2603387358","https://openalex.org/W2570892890"],"abstract_inverted_index":{"Federated":[0],"learning":[1,22],"aims":[2],"to":[3,25,49,94,122,166,196],"complete":[4],"model":[5],"training":[6],"without":[7],"private":[8],"data":[9,152,169],"sharing,":[10],"but":[11,46],"many":[12],"privacy":[13],"risks":[14],"remain.":[15],"Recent":[16],"studies":[17],"have":[18],"shown":[19],"that":[20,75,179],"federated":[21,69],"is":[23,104],"vulnerable":[24],"membership":[26,43,65],"inference":[27,44,66,165,185],"attacks.":[28],"The":[29],"weight":[30,74],"as":[31],"an":[32,87],"important":[33,88],"parameter":[34],"in":[35,55,90],"neural":[36,139],"networks":[37],"has":[38],"been":[39],"proven":[40],"effective":[41],"for":[42,63],"attacks,":[45],"it":[47],"leads":[48],"significant":[50],"overhead.":[51],"Facing":[52],"this":[53,56],"issue,":[54],"paper,":[57],"we":[58,136,160],"propose":[59],"a":[60,138,162],"bias-based":[61],"method":[62,182,195],"efficient":[64],"attacks":[67],"against":[68],"learning.":[70],"Different":[71],"from":[72],"the":[73,77,80,83,92,97,100,108,133,145,150,157,168,180,190,193],"determines":[76],"direction":[78],"of":[79,102,114,126,149,192],"decision":[81],"surface,":[82],"bias":[84,103,147],"also":[85],"plays":[86],"role":[89],"determining":[91],"distance":[93],"move":[95],"along":[96],"direction.":[98],"Moreover,":[99,187],"number":[101],"way":[105],"less":[106],"than":[107],"weight.":[109],"We":[110],"consider":[111],"two":[112,123],"types":[113,125],"attacks:":[115],"local":[116,134],"attack":[117],"and":[118,129,153],"global":[119,158],"attack,":[120,135,159],"corresponding":[121],"possible":[124],"insiders:":[127],"participant":[128],"central":[130],"aggregator.":[131],"For":[132,156],"design":[137,161],"network-based":[140],"inference,":[141],"which":[142],"fully":[143],"learns":[144],"vertical":[146],"changes":[148],"member":[151],"non-member":[154],"data.":[155],"difference":[163],"comparison-based":[164],"determine":[167],"source.":[170],"Extensive":[171],"experimental":[172],"results":[173],"on":[174],"four":[175],"public":[176],"datasets":[177],"show":[178],"proposed":[181,194],"achieves":[183],"state-of-the-art":[184],"accuracy.":[186],"experiments":[188],"prove":[189],"effectiveness":[191],"resist":[197],"some":[198],"commonly":[199],"used":[200],"defenses.":[201]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387298135","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-02-21T13:15:27.420623","created_date":"2023-10-04"}