{"id":"https://openalex.org/W4388994318","doi":"https://doi.org/10.1145/3604237.3626909","title":"NMTucker: Non-linear Matryoshka Tucker Decomposition for Financial Time Series Imputation","display_name":"NMTucker: Non-linear Matryoshka Tucker Decomposition for Financial Time Series Imputation","publication_year":2023,"publication_date":"2023-11-25","ids":{"openalex":"https://openalex.org/W4388994318","doi":"https://doi.org/10.1145/3604237.3626909"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3604237.3626909","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3604237.3626909","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3604237.3626909","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092084560","display_name":"Uras Varolg\u00fcne\u015f","orcid":"https://orcid.org/0000-0002-9821-4183"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Uras Varolgunes","raw_affiliation_strings":["New Jersey Institute of Technology, United States"],"affiliations":[{"raw_affiliation_string":"New Jersey Institute of Technology, United States","institution_ids":["https://openalex.org/I118118575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067100123","display_name":"Dan Zhou","orcid":"https://orcid.org/0009-0007-4307-1254"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dan Zhou","raw_affiliation_strings":["New Jersey Institute of Technology, United States"],"affiliations":[{"raw_affiliation_string":"New Jersey Institute of Technology, United States","institution_ids":["https://openalex.org/I118118575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040600525","display_name":"D.C. Yu","orcid":"https://orcid.org/0009-0005-3393-7101"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dantong Yu","raw_affiliation_strings":["New Jersey Institute of Technology, United States"],"affiliations":[{"raw_affiliation_string":"New Jersey Institute of Technology, United States","institution_ids":["https://openalex.org/I118118575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073717961","display_name":"Ajim Uddin","orcid":"https://orcid.org/0000-0002-3745-5194"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ajim Uddin","raw_affiliation_strings":["New Jersey Institute of Technology, United States"],"affiliations":[{"raw_affiliation_string":"New Jersey Institute of Technology, United States","institution_ids":["https://openalex.org/I118118575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":"16","issue":null,"first_page":"516","last_page":"523"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11304","display_name":"Advanced Neuroimaging Techniques and Applications","score":0.9638,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.6596088},{"id":"https://openalex.org/keywords/tucker-decomposition","display_name":"Tucker Decomposition","score":0.646107}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70703286},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.6596088},{"id":"https://openalex.org/C42704193","wikidata":"https://www.wikidata.org/wiki/Q7851097","display_name":"Tucker decomposition","level":4,"score":0.646107},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.5507728},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.46411592},{"id":"https://openalex.org/C132459708","wikidata":"https://www.wikidata.org/wiki/Q744069","display_name":"Extrapolation","level":2,"score":0.4363741},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.43499094},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.42132697},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38063282},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36071092},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3508255},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32179147},{"id":"https://openalex.org/C2986737658","wikidata":"https://www.wikidata.org/wiki/Q30103009","display_name":"Tensor decomposition","level":3,"score":0.22998044},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18481374},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08638683},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3604237.3626909","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3604237.3626909","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3604237.3626909","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3604237.3626909","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1677931087","https://openalex.org/W1814521481","https://openalex.org/W1963826206","https://openalex.org/W1985349674","https://openalex.org/W2000215628","https://openalex.org/W2024165284","https://openalex.org/W2091449379","https://openalex.org/W2606967921","https://openalex.org/W2889186417","https://openalex.org/W2922166087","https://openalex.org/W2965446129","https://openalex.org/W3123370480","https://openalex.org/W3124738474","https://openalex.org/W3206693033","https://openalex.org/W4205539948","https://openalex.org/W4220973851"],"related_works":["https://openalex.org/W4372260520","https://openalex.org/W4362597605","https://openalex.org/W4225314493","https://openalex.org/W2955092129","https://openalex.org/W2943502243","https://openalex.org/W2799492147","https://openalex.org/W2159314924","https://openalex.org/W2132850745","https://openalex.org/W2111571984","https://openalex.org/W1574414179"],"abstract_inverted_index":{"Missing":[0],"values":[1,75],"in":[2,11,232,260,266],"financial":[3,12,29],"time":[4],"series":[5],"data":[6,19,102,132],"are":[7,133],"of":[8,28,43,72,94,149,215,229],"paramount":[9],"importance":[10],"modeling":[13],"and":[14,26,31,67,100,110,121,137,153,175,183,218,249],"analysis.":[15],"Appropriately":[16],"handling":[17],"missing":[18,74],"is":[20,224,235],"essential":[21],"to":[22,127,179,226,242,256],"ensure":[23,184],"the":[24,63,70,125,129,189,213,220,263],"accuracy":[25],"reliability":[27],"models":[30,147,265],"forecasts.":[32],"In":[33],"this":[34],"paper,":[35],"we":[36,198],"focus":[37],"on":[38],"datasets":[39,78],"containing":[40],"multiple":[41,267],"attributes":[42],"different":[44],"firms":[45],"across":[46],"time,":[47,65],"such":[48],"as":[49,58,83],"firm":[50,66],"fundamentals":[51],"or":[52],"characteristics,":[53],"which":[54,233],"can":[55,79],"be":[56,81],"represented":[57],"three":[59],"dimensional":[60],"tensors":[61],"with":[62,192,262],"dimensions":[64],"attribute.":[68],"Hence,":[69],"task":[71],"imputing":[73],"for":[76],"these":[77,181],"also":[80],"formulated":[82],"a":[84,91,200,206],"tensor":[85,116,196,268],"completion":[86,89,107,269],"problem.":[87],"Tensor":[88],"has":[90],"wide":[92],"range":[93],"applications,":[95],"including":[96],"link":[97],"prediction,":[98],"recommendation,":[99],"scientific":[101],"extrapolation.":[103],"The":[104],"widely":[105],"used":[106],"algorithms,":[108,197],"CP":[109],"Tucker":[111,165,171],"decompositions,":[112],"factorize":[113],"an":[114,160],"N-order":[115,143],"into":[117,209],"N":[118],"embedding":[119],"matrices":[120],"use":[122],"multi-linearity":[123],"among":[124],"factors":[126],"reconstruct":[128],"tensor.":[130],"Real-world":[131],"often":[134],"highly":[135],"sparse":[136],"involve":[138],"complex":[139],"interactions":[140],"beyond":[141],"simple":[142],"linearity;":[144],"they":[145],"demand":[146],"capable":[148],"capturing":[150],"latent":[151],"variables":[152],"their":[154],"non-linear":[155,176],"multi-way":[156],"interactions.":[157],"We":[158,239],"design":[159],"algorithm,":[161],"called":[162],"Non-Linear":[163],"Matryoshka":[164,227],"Completion":[166],"(NMTucker),":[167],"that":[168,203,244],"uses":[169],"element-wise":[170],"decomposition,":[172],"multi-layer":[173],"perceptrons,":[174],"activation":[177],"functions":[178],"solve":[180],"challenges":[182],"its":[185,251],"scalability.":[186],"To":[187],"avoid":[188],"overfitting":[190,248],"problem":[191],"existing":[193],"neural":[194],"network-based":[195],"develop":[199],"novel":[201],"strategy":[202],"recursively":[204],"decomposes":[205],"tucker":[207],"core":[208],"smaller":[210],"ones,":[211],"reduces":[212],"number":[214],"trainable":[216],"parameters,":[217],"regularizes":[219],"complexity.":[221],"Its":[222],"structure":[223],"similar":[225],"dolls":[228],"decreasing":[230],"size":[231],"one":[234],"nested":[236],"inside":[237],"another.":[238],"conduct":[240],"experiments":[241],"show":[243],"NMTucker":[245],"effectively":[246],"mitigates":[247],"demonstrate":[250],"superior":[252],"generalization":[253],"capability":[254],"(up":[255],"53.91%":[257],"less":[258],"RMSE)":[259],"comparison":[261],"state-of-the-art":[264],"tasks.":[270]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388994318","counts_by_year":[],"updated_date":"2025-01-02T15:00:01.320530","created_date":"2023-11-26"}