{"id":"https://openalex.org/W4384835303","doi":"https://doi.org/10.1145/3599609.3599629","title":"A Contrarian Trading Strategy: Mean vs. Median Reversion","display_name":"A Contrarian Trading Strategy: Mean vs. Median Reversion","publication_year":2023,"publication_date":"2023-04-27","ids":{"openalex":"https://openalex.org/W4384835303","doi":"https://doi.org/10.1145/3599609.3599629"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3599609.3599629","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101851863","display_name":"Sheng Chai","orcid":"https://orcid.org/0000-0002-3702-8918"},"institutions":[{"id":"https://openalex.org/I28324025","display_name":"University of Central Missouri","ror":"https://ror.org/02c63wv67","country_code":"US","type":"education","lineage":["https://openalex.org/I28324025"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sheng Chai","raw_affiliation_strings":["Department of Computer Science and Cybersecurity, University of Central Missouri, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Cybersecurity, University of Central Missouri, USA","institution_ids":["https://openalex.org/I28324025"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021123192","display_name":"Xianrong Zheng","orcid":"https://orcid.org/0000-0003-2695-9642"},"institutions":[{"id":"https://openalex.org/I81365321","display_name":"Old Dominion University","ror":"https://ror.org/04zjtrb98","country_code":"US","type":"education","lineage":["https://openalex.org/I81365321"]},{"id":"https://openalex.org/I4210133369","display_name":"Decision Sciences (United States)","ror":"https://ror.org/03gcvf773","country_code":"US","type":"company","lineage":["https://openalex.org/I4210133369"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xianrong Zheng","raw_affiliation_strings":["Information Technology & Decision Sciences Department, Old Dominion University, USA"],"affiliations":[{"raw_affiliation_string":"Information Technology & Decision Sciences Department, Old Dominion University, USA","institution_ids":["https://openalex.org/I81365321","https://openalex.org/I4210133369"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"134","last_page":"138"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10047","display_name":"Financial Markets and Investment Strategies","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2003","display_name":"Finance"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9849,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mean-reversion","display_name":"Mean reversion","score":0.8838711},{"id":"https://openalex.org/keywords/contrarian","display_name":"Contrarian","score":0.8242837},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41810793}],"concepts":[{"id":"https://openalex.org/C135205223","wikidata":"https://www.wikidata.org/wiki/Q367137","display_name":"Mean reversion","level":2,"score":0.8838711},{"id":"https://openalex.org/C2779652781","wikidata":"https://www.wikidata.org/wiki/Q5165738","display_name":"Contrarian","level":2,"score":0.8242837},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.6394914},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61477554},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.54727554},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.52864724},{"id":"https://openalex.org/C2780821815","wikidata":"https://www.wikidata.org/wiki/Q5340806","display_name":"Portfolio","level":2,"score":0.5250875},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4241618},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41810793},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.34237033},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.30485132},{"id":"https://openalex.org/C106159729","wikidata":"https://www.wikidata.org/wiki/Q2294553","display_name":"Financial economics","level":1,"score":0.29614908},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23954993},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21790344},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3599609.3599629","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.59,"id":"https://metadata.un.org/sdg/1","display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1964964840","https://openalex.org/W1995236272","https://openalex.org/W2027264865","https://openalex.org/W2029480990","https://openalex.org/W2040324983","https://openalex.org/W2042456949","https://openalex.org/W2097421746","https://openalex.org/W2158076035","https://openalex.org/W2210387432","https://openalex.org/W2346153109","https://openalex.org/W2601008217","https://openalex.org/W2773026648","https://openalex.org/W2809119175","https://openalex.org/W2938744463","https://openalex.org/W2950932906","https://openalex.org/W3016284170","https://openalex.org/W3123095408","https://openalex.org/W3201707004","https://openalex.org/W4285246392","https://openalex.org/W566598247","https://openalex.org/W641595342"],"related_works":["https://openalex.org/W4210897550","https://openalex.org/W3123527334","https://openalex.org/W2886834384","https://openalex.org/W2167707698","https://openalex.org/W2116399990","https://openalex.org/W2109184320","https://openalex.org/W2042868518","https://openalex.org/W2039727220","https://openalex.org/W2036764622","https://openalex.org/W1992134683"],"abstract_inverted_index":{"To":[0,146,172],"optimize":[1],"the":[2,10,61,76,107,116,120,128,148,174,193],"total":[3],"cumulative":[4],"wealth,":[5],"it":[6,43,47,113],"needs":[7],"to":[8],"rebalance":[9],"portfolio":[11,19,40],"on":[12,135,184],"a":[13,35,50,53,100,126,164,169],"period-by-period":[14],"basis,":[15],"using":[16],"previously":[17],"published":[18],"values.":[20],"The":[21],"median":[22,57,69,101],"and":[23,68,84,95,111,143,191,197],"mean":[24,67,77],"reversion":[25,33,58,70,78,102,166],"techniques":[26],"are":[27],"two":[28,129,154],"contrarian":[29],"trading":[30,37],"strategies.":[31],"Mean":[32],"is":[34,44],"common":[36],"strategy":[38],"in":[39,92,106],"theory.":[41],"If":[42],"used":[45],"properly,":[46],"could":[48],"outperform":[49],"benchmark.":[51],"Using":[52],"strong":[54],"-median":[55],"estimator,":[56],"explicitly":[59],"predicts":[60],"next":[62],"price":[63],"vector.":[64],"However,":[65],"current":[66],"methods":[71,130,155],"have":[72,181],"several":[73],"limitations:":[74],"First,":[75],"method":[79,103],"does":[80],"not":[81,132],"consider":[82],"noise":[83,110,142,196],"outliers;":[85],"It":[86,187],"suffers":[87,115],"from":[88],"estimate":[89],"mistakes,":[90],"resulting":[91],"suboptimal":[93],"portfolios":[94],"poor":[96],"performance.":[97],"Second,":[98],"although":[99],"works":[104],"well":[105,134],"presence":[108],"of":[109,176,195],"outliers,":[112],"also":[114],"same":[117],"issues":[118,149],"when":[119],"dataset":[121],"contains":[122],"worthless":[123,144],"data.":[124,145],"As":[125],"result,":[127],"may":[131,139],"work":[133],"real-world":[136,185],"datasets,":[137],"which":[138],"contain":[140],"both":[141],"address":[147],"mentioned":[150],"above,":[151],"we":[152,162],"provide":[153],"for":[156],"selecting":[157],"an":[158],"online":[159],"portfolio.":[160],"Also,":[161],"propose":[163],"hybrid":[165],"approach":[167],"with":[168],"weighted":[170],"scheme.":[171],"evaluate":[173],"effectiveness":[175],"our":[177],"method,":[178],"extensive":[179],"experiments":[180],"been":[182],"conducted":[183],"datasets.":[186],"can":[188],"improve":[189],"performance":[190],"reduce":[192],"impact":[194],"outliers.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4384835303","counts_by_year":[],"updated_date":"2025-01-07T15:13:46.378934","created_date":"2023-07-21"}