{"id":"https://openalex.org/W4381196501","doi":"https://doi.org/10.1145/3596286.3596287","title":"Improved Mask R-CNN Network Method for PV Panel Defect Detection","display_name":"Improved Mask R-CNN Network Method for PV Panel Defect Detection","publication_year":2023,"publication_date":"2023-04-28","ids":{"openalex":"https://openalex.org/W4381196501","doi":"https://doi.org/10.1145/3596286.3596287"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3596286.3596287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101719456","display_name":"W. Q. Yang","orcid":"https://orcid.org/0009-0008-7388-6021"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wangwang Yang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100635057","display_name":"Zhongliang Deng","orcid":"https://orcid.org/0000-0002-1458-3978"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhongliang Deng","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077221055","display_name":"Enwen Hu","orcid":"https://orcid.org/0000-0001-5019-3961"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Enwen Hu","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100691620","display_name":"Yao Zhang","orcid":"https://orcid.org/0000-0002-5679-1644"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yao Zhang","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10468","display_name":"Photovoltaic System Optimization Techniques","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10468","display_name":"Photovoltaic System Optimization Techniques","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12838","display_name":"Photovoltaic Systems and Sustainability","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.6863501},{"id":"https://openalex.org/keywords/fuse","display_name":"Fuse (electrical)","score":0.4993937}],"concepts":[{"id":"https://openalex.org/C41291067","wikidata":"https://www.wikidata.org/wiki/Q1897785","display_name":"Photovoltaic system","level":2,"score":0.81697047},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73666096},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.6863501},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6576711},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5453548},{"id":"https://openalex.org/C141353440","wikidata":"https://www.wikidata.org/wiki/Q182221","display_name":"Fuse (electrical)","level":2,"score":0.4993937},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45829308},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4244989},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4103478},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.16474637},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3596286.3596287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2047621240","https://openalex.org/W2162619157","https://openalex.org/W2963150697","https://openalex.org/W2963446712","https://openalex.org/W2964241181","https://openalex.org/W3034733338","https://openalex.org/W4224216934","https://openalex.org/W4250482878"],"related_works":["https://openalex.org/W4243305035","https://openalex.org/W4239268388","https://openalex.org/W4237547500","https://openalex.org/W3000097931","https://openalex.org/W2379407973","https://openalex.org/W2373192430","https://openalex.org/W2354322770","https://openalex.org/W2350267540","https://openalex.org/W1570848052","https://openalex.org/W1537496349"],"abstract_inverted_index":{"Abstract:":[0],"With":[1],"the":[2,9,17,36,44,72,75,83,98,120,130,149,154,159,163,181,200,210,220,224,233,255],"increasing":[3],"popularity":[4],"of":[5,46,50,100,129,153,176,223,254],"photovoltaic":[6,12,28,54,63,183,228,241],"power":[7],"generation,":[8],"demand":[10],"for":[11,240],"panel":[13,55,64,184,229,242],"defect":[14,37,56,65,230,237,243],"detection":[15,38,48,57,66,174,221,231,238,244],"in":[16,119,148,227,258],"industry":[18],"is":[19,68,80,90,112,133,156,204],"also":[20],"increasing.":[21],"Deep":[22],"learning":[23],"can":[24],"automatically":[25],"extract":[26],"individual":[27],"panels":[29],"from":[30],"images":[31],"or":[32],"videos,":[33],"and":[34,82,96,162,186,193,206,252],"perform":[35],"task":[39],"on":[40,87,180,199,248],"it.":[41],"Aiming":[42],"at":[43],"problem":[45],"low":[47],"accuracy":[49,141,175],"existing":[51],"deep":[52,123,235],"learning-based":[53,236],"methods,":[58],"an":[59],"improved":[60,134,168,225,256],"Mask":[61,169,212],"R-CNN":[62,170,213],"algorithm":[67,155,171,214,226,257],"proposed.":[69],"To":[70],"improve":[71],"training":[73],"performance,":[74],"feature":[76],"pyramid":[77],"(FPN)":[78],"structure":[79],"improved,":[81],"cascade":[84],"network":[85,125],"based":[86],"attention":[88],"guidance":[89],"adopted":[91],"to":[92,104,114,139,144,217],"fuse":[93],"more":[94,177],"features":[95],"prevent":[97,140],"loss":[99,142],"shallow":[101],"semantic":[102],"information":[103],"a":[105,173,250],"certain":[106],"extent.":[107],"Secondly,":[108],"Group":[109],"Normalization":[110,117],"(GN)":[111],"used":[113],"replace":[115],"Batch":[116],"(BN)":[118],"traditional":[121],"high-performance":[122],"neural":[124],"models.":[126],"The":[127,151,167],"quality":[128],"self-made":[131,160,182],"dataset":[132,161,185],"by":[135,158],"Mosaic":[136],"data":[137],"enhancement":[138],"due":[143],"insufficient":[145],"sample":[146],"size":[147],"dataset.":[150,166],"effectiveness":[152],"verified":[157],"public":[164],"COCO2017":[165,201],"has":[172],"than":[178,209],"89%":[179],"44.6%":[187],"bounding":[188],"box":[189],"average":[190,196],"precision":[191,197],"(APbbox)":[192],"41.5%":[194],"mask":[195],"(APmask)":[198],"dataset,":[202],"which":[203],"6.4%":[205],"5.8%":[207],"higher":[208],"original":[211],"respectively.":[215],"Finally,":[216],"comprehensively":[218],"analyze":[219],"performance":[222],"tasks,":[232],"common":[234],"algorithms":[239],"are":[245,261],"summarized.":[246],"Based":[247],"this,":[249],"comparison":[251],"summary":[253],"this":[259],"paper":[260],"conducted.":[262]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4381196501","counts_by_year":[],"updated_date":"2025-02-27T09:39:06.082853","created_date":"2023-06-20"}