{"id":"https://openalex.org/W4381329135","doi":"https://doi.org/10.1145/3589777","title":"High-Throughput Vector Similarity Search in Knowledge Graphs","display_name":"High-Throughput Vector Similarity Search in Knowledge Graphs","publication_year":2023,"publication_date":"2023-06-13","ids":{"openalex":"https://openalex.org/W4381329135","doi":"https://doi.org/10.1145/3589777"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3589777","pdf_url":null,"source":{"id":"https://openalex.org/S4387289859","display_name":"Proceedings of the ACM on Management of Data","issn_l":"2836-6573","issn":["2836-6573"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2304.01926","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041665675","display_name":"Jason Mohoney","orcid":"https://orcid.org/0000-0001-5497-0481"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"education","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jason Mohoney","raw_affiliation_strings":["University of Wisconsin-Madison, Madison, WI, USA"],"affiliations":[{"raw_affiliation_string":"University of Wisconsin-Madison, Madison, WI, USA","institution_ids":["https://openalex.org/I135310074"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052360032","display_name":"Anil Pacaci","orcid":"https://orcid.org/0000-0003-4994-8014"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Anil Pacaci","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055538536","display_name":"Shihabur Rahman Chowdhury","orcid":"https://orcid.org/0000-0002-6232-2027"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shihabur Rahman Chowdhury","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101523016","display_name":"Ali Mousavi","orcid":"https://orcid.org/0000-0002-1160-5975"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ali Mousavi","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000141065","display_name":"Ihab F. Ilyas","orcid":"https://orcid.org/0000-0001-9052-9714"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ihab F. Ilyas","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032253873","display_name":"Umar Farooq Minhas","orcid":"https://orcid.org/0009-0005-6520-3794"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Umar Farooq Minhas","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060727577","display_name":"Jeffrey Pound","orcid":"https://orcid.org/0000-0001-6281-6345"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jeffrey Pound","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002060759","display_name":"Theodoros Rekatsinas","orcid":"https://orcid.org/0000-0001-6148-1854"},"institutions":[{"id":"https://openalex.org/I4210153776","display_name":"Apple (United States)","ror":"https://ror.org/059hsda18","country_code":"US","type":"company","lineage":["https://openalex.org/I4210153776"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Theodoros Rekatsinas","raw_affiliation_strings":["Apple, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"Apple, Seattle, WA, USA","institution_ids":["https://openalex.org/I4210153776"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.762,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"1","issue":"2","first_page":"1","last_page":"25"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11478","display_name":"Caching and Content Delivery","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.504073},{"id":"https://openalex.org/keywords/vector-space-model","display_name":"Vector space model","score":0.45114917}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76707155},{"id":"https://openalex.org/C99016210","wikidata":"https://www.wikidata.org/wiki/Q5488129","display_name":"Query expansion","level":2,"score":0.5773802},{"id":"https://openalex.org/C118689300","wikidata":"https://www.wikidata.org/wiki/Q7978614","display_name":"Web query classification","level":4,"score":0.5708358},{"id":"https://openalex.org/C116738811","wikidata":"https://www.wikidata.org/wiki/Q608751","display_name":"Nearest neighbor search","level":2,"score":0.54514146},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.54504544},{"id":"https://openalex.org/C164120249","wikidata":"https://www.wikidata.org/wiki/Q995982","display_name":"Web search query","level":3,"score":0.5102041},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.504073},{"id":"https://openalex.org/C192939062","wikidata":"https://www.wikidata.org/wiki/Q104840822","display_name":"Sargable","level":4,"score":0.477873},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.46678245},{"id":"https://openalex.org/C192028432","wikidata":"https://www.wikidata.org/wiki/Q845739","display_name":"Query language","level":2,"score":0.45870507},{"id":"https://openalex.org/C89686163","wikidata":"https://www.wikidata.org/wiki/Q1187982","display_name":"Vector space model","level":2,"score":0.45114917},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4482713},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.4275342},{"id":"https://openalex.org/C157692150","wikidata":"https://www.wikidata.org/wiki/Q2919848","display_name":"Query optimization","level":2,"score":0.4249705},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.41343784},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3678959},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2556361},{"id":"https://openalex.org/C97854310","wikidata":"https://www.wikidata.org/wiki/Q19541","display_name":"Search engine","level":2,"score":0.23117813},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3589777","pdf_url":null,"source":{"id":"https://openalex.org/S4387289859","display_name":"Proceedings of the ACM on Management of Data","issn_l":"2836-6573","issn":["2836-6573"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2304.01926","pdf_url":"http://arxiv.org/pdf/2304.01926","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2304.01926","pdf_url":"http://arxiv.org/pdf/2304.01926","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1888005072","https://openalex.org/W1981988185","https://openalex.org/W2024668293","https://openalex.org/W2073587810","https://openalex.org/W2124509324","https://openalex.org/W2132234208","https://openalex.org/W2147717514","https://openalex.org/W2153329411","https://openalex.org/W2340690086","https://openalex.org/W2387462954","https://openalex.org/W2593507512","https://openalex.org/W2742272831","https://openalex.org/W2759136286","https://openalex.org/W2808787330","https://openalex.org/W2896348597","https://openalex.org/W2901613577","https://openalex.org/W2962756421","https://openalex.org/W2963224980","https://openalex.org/W2963469388","https://openalex.org/W2963601856","https://openalex.org/W2963757395","https://openalex.org/W2990812675","https://openalex.org/W3029327553","https://openalex.org/W3029865833","https://openalex.org/W3085011441","https://openalex.org/W3098304379","https://openalex.org/W3104097132","https://openalex.org/W3104307750","https://openalex.org/W3104926413","https://openalex.org/W3156333129","https://openalex.org/W3158312191","https://openalex.org/W3166219725","https://openalex.org/W3174809957","https://openalex.org/W3198194663","https://openalex.org/W3198700550","https://openalex.org/W4224049479","https://openalex.org/W4287780403","https://openalex.org/W4299585995"],"related_works":["https://openalex.org/W3049728138","https://openalex.org/W2901901036","https://openalex.org/W2572349046","https://openalex.org/W2146885082","https://openalex.org/W2124814993","https://openalex.org/W2096359267","https://openalex.org/W2026738364","https://openalex.org/W2013069866","https://openalex.org/W2006459955","https://openalex.org/W1793997780"],"abstract_inverted_index":{"There":[0],"is":[1],"an":[2,158],"increasing":[3],"adoption":[4],"of":[5,48,56,81,91,135,213,227,258],"machine":[6],"learning":[7],"for":[8,63,77,112,122,223,279],"encoding":[9],"data":[10,25,104,235],"into":[11],"vectors":[12],"to":[13,85,95,118,131,187,194,199,238,244,254,285],"serve":[14],"online":[15,33,204],"recommendation":[16],"and":[17,61,89,162,248,269],"search":[18,44,74,88],"use":[19],"cases.":[20],"As":[21],"a":[22,113,146,154,160,163,178,232,250,274],"result,":[23],"recent":[24],"management":[26],"systems":[27],"propose":[28],"augmenting":[29],"query":[30,66,83,93,172,216,288],"processing":[31,212,226,289],"with":[32,101,157],"vector":[34,42,72,86,127,133,234,241,259],"similarity":[35,43,73,87,180,260],"search.":[36],"In":[37,197],"this":[38],"work,":[39],"we":[40,68,116,206],"explore":[41],"in":[45,138,145,277],"the":[46,54,82,92,102,132,136,139,240,245,256],"context":[47],"Knowledge":[49],"Graphs":[50],"(KGs).":[51],"Motivated":[52],"by":[53],"tasks":[55,184],"finding":[57,280],"related":[58,281],"KG":[59,65,110,141,147,282],"queries":[60,76,111,121,283],"entities":[62,125,144,168],"past":[64,109,140,214],"workloads,":[67],"focus":[69,207],"on":[70,208,266],"hybrid":[71,195,215,228,287],"(hybrid":[75],"short)":[78],"where":[79],"part":[80,90],"corresponds":[84,94],"predicates":[96,173],"over":[97,174],"relational":[98],"attributes":[99,151,176],"associated":[100,156],"underlying":[103],"vectors.":[105],"For":[106],"example,":[107],"given":[108,246],"song":[114,124,155],"entity,":[115],"want":[117],"construct":[119],"new":[120,123],"whose":[126],"representations":[128],"are":[129,185,191],"close":[130],"representation":[134],"entity":[137],"query.":[142],"But":[143],"also":[148,170],"have":[149],"non-vector":[150,175],"such":[152],"as":[153],"artist,":[159],"genre,":[161],"release":[164],"date.":[165],"Therefore,":[166],"suggested":[167],"must":[169],"satisfy":[171],"beyond":[177],"vector-based":[179],"predicate.":[181],"While":[182],"these":[183],"central":[186],"KGs,":[188],"our":[189,220,264],"contributions":[190],"generally":[192],"applicable":[193],"queries.":[196,229],"contrast":[198],"prior":[200],"works":[201],"that":[202,271],"optimize":[203],"queries,":[205],"enabling":[209],"efficient":[210],"batch":[211,225],"workloads.":[217],"We":[218,230,262],"present":[219],"system,":[221],"HQI,":[222],"high-throughput":[224],"introduce":[231],"workload-aware":[233],"partitioning":[236],"scheme":[237],"tailor":[239],"index":[242],"layout":[243],"workload":[247],"describe":[249],"multi-query":[251],"optimization":[252],"technique":[253],"reduce":[255],"overhead":[257],"computations.":[261],"evaluate":[263],"methods":[265],"industrial":[267],"workloads":[268],"demonstrate":[270],"HQI":[272],"yields":[273],"31\u00d7":[275],"improvement":[276],"throughput":[278],"compared":[284],"existing":[286],"approaches.":[290]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4381329135","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-02T23:46:38.324485","created_date":"2023-06-21"}