{"id":"https://openalex.org/W4386226714","doi":"https://doi.org/10.1145/3589737.3605985","title":"Enabling local learning for generative-replay-based continual learning with a recurrent model of the insect memory center","display_name":"Enabling local learning for generative-replay-based continual learning with a recurrent model of the insect memory center","publication_year":2023,"publication_date":"2023-08-01","ids":{"openalex":"https://openalex.org/W4386226714","doi":"https://doi.org/10.1145/3589737.3605985"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3589737.3605985","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1145/3589737.3605985","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055443045","display_name":"Raphael Norman-Tenazas","orcid":"https://orcid.org/0000-0001-8883-9772"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Raphael Norman-Tenazas","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004225952","display_name":"Isaac Western","orcid":"https://orcid.org/0009-0003-6916-0168"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Isaac Western","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030439130","display_name":"Gautam K. Vallabha","orcid":"https://orcid.org/0000-0001-6856-7968"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gautam Vallabha","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044966411","display_name":"Matthew J. Roos","orcid":"https://orcid.org/0000-0001-5705-9028"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Matthew J Roos","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037437190","display_name":"Erik C. Johnson","orcid":"https://orcid.org/0000-0002-7397-8531"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Erik C Johnson","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032983832","display_name":"Brian S. Robinson","orcid":"https://orcid.org/0000-0003-3422-7011"},"institutions":[{"id":"https://openalex.org/I2802946424","display_name":"Johns Hopkins University Applied Physics Laboratory","ror":"https://ror.org/029pp9z10","country_code":"US","type":"facility","lineage":["https://openalex.org/I145311948","https://openalex.org/I2802946424"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Brian S Robinson","raw_affiliation_strings":["Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States"],"affiliations":[{"raw_affiliation_string":"Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States","institution_ids":["https://openalex.org/I2802946424"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/neuromorphic-engineering","display_name":"Neuromorphic engineering","score":0.90316343},{"id":"https://openalex.org/keywords/learning-rule","display_name":"Learning rule","score":0.45870695}],"concepts":[{"id":"https://openalex.org/C151927369","wikidata":"https://www.wikidata.org/wiki/Q1981312","display_name":"Neuromorphic engineering","level":3,"score":0.90316343},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78437227},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7029866},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6007713},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5984898},{"id":"https://openalex.org/C2779127903","wikidata":"https://www.wikidata.org/wiki/Q6510194","display_name":"Learning rule","level":3,"score":0.45870695},{"id":"https://openalex.org/C11731999","wikidata":"https://www.wikidata.org/wiki/Q9067355","display_name":"Spiking neural network","level":3,"score":0.4234217},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.41707742}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3589737.3605985","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3589737.3605985","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1993533483","https://openalex.org/W2004437322","https://openalex.org/W2048054368","https://openalex.org/W2179301060","https://openalex.org/W2588048611","https://openalex.org/W2748551393","https://openalex.org/W2783525259","https://openalex.org/W2787016195","https://openalex.org/W2788388592","https://openalex.org/W2979879900","https://openalex.org/W3016391357","https://openalex.org/W3120582545","https://openalex.org/W3198317271","https://openalex.org/W4220918847","https://openalex.org/W4297661238","https://openalex.org/W4312210066","https://openalex.org/W4317612160"],"related_works":["https://openalex.org/W4386227293","https://openalex.org/W4372267706","https://openalex.org/W4313442939","https://openalex.org/W4288055417","https://openalex.org/W4287758233","https://openalex.org/W4205804651","https://openalex.org/W3136467750","https://openalex.org/W3089892344","https://openalex.org/W2960220682","https://openalex.org/W2885510266"],"abstract_inverted_index":{"Continual":[0],"learning":[1,37,74,79,100,151,167,193,216],"without":[2,172],"catastrophic":[3],"forgetting":[4],"of":[5,34,107,123,205],"previous":[6],"experiences":[7],"is":[8,18],"an":[9,69],"open":[10],"general":[11,225],"challenge":[12],"for":[13,21,46,71,191,214,227],"artificial":[14,22,47],"neural":[15,23,41,48],"networks,":[16,49],"but":[17],"especially":[19,50],"under-explored":[20],"networks":[24,42],"suitable":[25],"to":[26,60,142,157,177],"implement":[27],"on":[28,82,135],"neuromorphic":[29,52,137,178,228],"platforms.":[30],"An":[31],"algorithmic":[32],"understanding":[33,213],"how":[35],"continual":[36,73,99,192,215,229],"occurs":[38],"in":[39,51,85,217],"biological":[40,219],"can":[43,130,208],"inform":[44,209],"solutions":[45],"platforms":[53,138],"whose":[54],"biomimetic":[55],"computing":[56],"architectures":[57],"lend":[58],"themselves":[59],"more":[61,211],"biofidelic":[62],"algorithms.":[63],"In":[64],"this":[65,121,199,206,218],"work,":[66],"we":[67,103,146,181],"derive":[68,147],"approach":[70],"generative-replay-based":[72],"with":[75,94,139],"a":[76,95,148,210],"three-factor":[77,149],"local":[78,150],"rule":[80,152,168],"based":[81],"recurrent":[83],"connectivity":[84],"the":[86,92,105,108,115,166,203],"insect's":[87],"memory":[88],"center,":[89],"and":[90,112,126,175,194],"characterize":[91],"model":[93,143],"CIFAR-100":[96],"class":[97],"incremental":[98],"task.":[101],"First,":[102],"investigate":[104],"properties":[106],"model's":[109],"internal":[110],"representations":[111,119,129],"find":[113,182],"that":[114,127,183],"high":[116],"dimensional":[117],"sparse":[118],"enable":[120],"form":[122],"generative":[124],"replay,":[125],"these":[128,184],"be":[131],"binary":[132],"as":[133,221,223],"required":[134],"spiking":[136],"little":[140],"detriment":[141],"performance.":[144,201],"Next,":[145],"by":[153],"introducing":[154],"simplifying":[155],"assumptions":[156],"network":[158],"updates":[159],"from":[160],"error":[161],"backpropagation":[162],"optimization":[163,190],"which":[164],"makes":[165],"biologically":[169],"plausible":[170],"(i.e.,":[171],"weight":[173],"transport)":[174],"amenable":[176],"implementation.":[179],"Finally,":[180],"simplifications":[185],"enhance":[186],"performance":[187],"during":[188],"gradient-based":[189],"when":[195],"implemented":[196],"locally":[197],"achieve":[198],"increased":[200],"Overall,":[202],"outcomes":[204],"work":[207],"detailed":[212],"circuit,":[220],"well":[222],"introduce":[224],"approaches":[226],"learning.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386226714","counts_by_year":[],"updated_date":"2025-01-04T23:04:45.720537","created_date":"2023-08-29"}