{"id":"https://openalex.org/W4380318181","doi":"https://doi.org/10.1145/3588155.3588182","title":"A hybrid CNN-LSTM-Attention model for electric energy consumption forecasting","display_name":"A hybrid CNN-LSTM-Attention model for electric energy consumption forecasting","publication_year":2023,"publication_date":"2023-02-09","ids":{"openalex":"https://openalex.org/W4380318181","doi":"https://doi.org/10.1145/3588155.3588182"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3588155.3588182","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101410949","display_name":"Zicheng Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":true,"raw_author_name":"Zicheng Lin","raw_affiliation_strings":["Hong Kong Polytechnic University, China"],"affiliations":[{"raw_affiliation_string":"Hong Kong Polytechnic University, China","institution_ids":["https://openalex.org/I14243506"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5101410949"],"corresponding_institution_ids":["https://openalex.org/I14243506"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"167","last_page":"173"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9748,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/consumption","display_name":"Consumption","score":0.5245319},{"id":"https://openalex.org/keywords/electric-energy-consumption","display_name":"Electric energy consumption","score":0.4567188}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72164357},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.6851485},{"id":"https://openalex.org/C30772137","wikidata":"https://www.wikidata.org/wiki/Q5164762","display_name":"Consumption (sociology)","level":2,"score":0.5245319},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51227707},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.48897707},{"id":"https://openalex.org/C2779027077","wikidata":"https://www.wikidata.org/wiki/Q29954","display_name":"Electric energy consumption","level":4,"score":0.4567188},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33576506},{"id":"https://openalex.org/C29592376","wikidata":"https://www.wikidata.org/wiki/Q206799","display_name":"Electric energy","level":3,"score":0.21395338},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.099554926},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.086146444},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.057606936},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3588155.3588182","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.91}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2064675550","https://openalex.org/W2107878631","https://openalex.org/W2158442843","https://openalex.org/W2906865296","https://openalex.org/W2908596992","https://openalex.org/W2948490758","https://openalex.org/W2975836901","https://openalex.org/W3090661556","https://openalex.org/W3146366485","https://openalex.org/W3182706339","https://openalex.org/W4205823816","https://openalex.org/W4286456972"],"related_works":["https://openalex.org/W4297745244","https://openalex.org/W4214628662","https://openalex.org/W2755888815","https://openalex.org/W2463144157","https://openalex.org/W2156822401","https://openalex.org/W2037518538","https://openalex.org/W2027004602","https://openalex.org/W2004137044","https://openalex.org/W1968084749","https://openalex.org/W1545765250"],"abstract_inverted_index":{"In":[0,63],"order":[1,64],"to":[2,18,65,106,127,133,145,164,195],"change":[3],"the":[4,7,23,34,68,111,114,136,139,149,179,190],"situation":[5],"of":[6,10,27,36,138,147,181,192],"yearly":[8],"increasement":[9],"global":[11],"electric":[12,58,182,196],"power":[13,59],"consumption,":[14],"it":[15,160],"is":[16,55,83,98,117,125,200],"important":[17],"keep":[19],"a":[20,94],"balance":[21],"between":[22],"generation":[24],"and":[25,45,121,141,159],"consumption":[26,60,91,184,198],"electricity":[28,89],"energy.":[29],"A":[30],"prediction":[31],"method":[32],"by":[33],"integration":[35],"two":[37],"deep":[38,76],"learning":[39,77],"techniques,":[40],"Convolutional":[41],"Neural":[42],"Network":[43],"(CNN)":[44],"Long":[46],"Short":[47],"Term":[48],"Memory":[49],"(LSTM),":[50],"with":[51,119,167],"its":[52],"considerable":[53],"accuracy,":[54],"popular":[56],"in":[57,88,100],"forecasting":[61,69,199],"recently.":[62],"further":[66,134],"improve":[67],"performance,":[70],"this":[71,101],"paper":[72],"leads":[73],"into":[74],"another":[75],"technique":[78],"called":[79],"Attention":[80,123,193],"Mechanism,":[81],"which":[82],"still":[84],"not":[85,176],"commonly":[86],"used":[87,126],"energy":[90,183,197],"forecasting.":[92],"Therefore,":[93],"hybrid":[95],"CNN-LSTM-Attention":[96],"model":[97,151,175],"proposed":[99,150,174],"paper.":[102],"Firstly,":[103],"using":[104],"CNN":[105],"capture":[107],"valuable":[108],"features":[109],"from":[110,131],"dataset.":[112],"Secondly,":[113],"temporal":[115,140],"correlation":[116],"dealt":[118],"LSTM,":[120,132],"lastly,":[122],"Mechanism":[124,194],"adjust":[128],"features'":[129],"weights":[130],"enhance":[135],"abstraction":[137],"spatial":[142],"features.":[143],"According":[144],"results":[146],"experiments,":[148],"has":[152],"better":[153],"performance":[154],"than":[155],"other":[156],"baseline":[157],"models,":[158],"can":[161],"be":[162],"able":[163],"analyze":[165],"dataset":[166],"different":[168],"time":[169],"resolution":[170],"as":[171],"well.":[172],"The":[173],"only":[177],"improves":[178],"accuracy":[180],"forecasting,":[185],"but":[186],"also":[187],"proves":[188],"that":[189],"implementation":[191],"meaningful.":[201]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380318181","counts_by_year":[],"updated_date":"2025-02-20T07:20:38.324457","created_date":"2023-06-13"}