{"id":"https://openalex.org/W4380301258","doi":"https://doi.org/10.1145/3588155.3588163","title":"Multi-Range Mixed Graph Convolution Network for Skeleton-Based Action Recognition","display_name":"Multi-Range Mixed Graph Convolution Network for Skeleton-Based Action Recognition","publication_year":2023,"publication_date":"2023-02-09","ids":{"openalex":"https://openalex.org/W4380301258","doi":"https://doi.org/10.1145/3588155.3588163"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3588155.3588163","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042521881","display_name":"U. S. Vaitesswar","orcid":"https://orcid.org/0000-0002-9479-1549"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"U S Vaitesswar","raw_affiliation_strings":["Computer Science & Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Computer Science & Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5006146465","display_name":"Chai Kiat Yeo","orcid":"https://orcid.org/0000-0002-7618-1472"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Chai Kiat Yeo","raw_affiliation_strings":["Computer Science & Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Computer Science & Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.233,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.440304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"49","last_page":"54"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.47069338},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.44067964},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.4399224},{"id":"https://openalex.org/keywords/expressive-power","display_name":"Expressive power","score":0.4295801}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7514795},{"id":"https://openalex.org/C19071747","wikidata":"https://www.wikidata.org/wiki/Q1755207","display_name":"Receptive field","level":2,"score":0.53647274},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.53441936},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5004809},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.47069338},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.45435703},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.44067964},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.4399224},{"id":"https://openalex.org/C195818886","wikidata":"https://www.wikidata.org/wiki/Q5421724","display_name":"Expressive power","level":2,"score":0.4295801},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42902213},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.23080206},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3588155.3588163","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320327962","funder_display_name":"Singapore Telecommunications Limited","award_id":"04INS000023NN037EOM01"}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1893516992","https://openalex.org/W1950788856","https://openalex.org/W1983705368","https://openalex.org/W2013943456","https://openalex.org/W2048821851","https://openalex.org/W2054041160","https://openalex.org/W2593146028","https://openalex.org/W2603861860","https://openalex.org/W2606294640","https://openalex.org/W2778523960","https://openalex.org/W2793547936","https://openalex.org/W2799211965","https://openalex.org/W2802979841","https://openalex.org/W2940457086","https://openalex.org/W2948058585","https://openalex.org/W2948246283","https://openalex.org/W2950568498","https://openalex.org/W2952587893","https://openalex.org/W2958492098","https://openalex.org/W2963076818","https://openalex.org/W2963465695","https://openalex.org/W2963876278","https://openalex.org/W2964134613","https://openalex.org/W2996835428","https://openalex.org/W2997769980","https://openalex.org/W3034999503","https://openalex.org/W3035225512","https://openalex.org/W3092754310","https://openalex.org/W3093751392","https://openalex.org/W3098538019","https://openalex.org/W3119584695"],"related_works":["https://openalex.org/W4303411729","https://openalex.org/W4211202157","https://openalex.org/W2913266608","https://openalex.org/W2799648451","https://openalex.org/W2189496153","https://openalex.org/W2089544495","https://openalex.org/W2079003682","https://openalex.org/W2004108207","https://openalex.org/W1964918325","https://openalex.org/W1555021777"],"abstract_inverted_index":{"Skeleton-based":[0],"action":[1,107],"recognition":[2],"is":[3],"a":[4,63,75,87],"long-standing":[5],"task":[6,39],"in":[7,23,58,161],"computer":[8],"vision":[9],"which":[10,66],"aims":[11],"to":[12,62,137,140],"distinguish":[13],"different":[14,102,110],"human":[15],"actions":[16],"by":[17,108],"identifying":[18],"their":[19,69],"unique":[20],"characteristic":[21],"patterns":[22,160],"the":[24,29,42,55,59,96,101,105,109,113,118,126,135,141,158,162],"input":[25,142],"data.":[26,143],"Most":[27],"of":[28,104],"existing":[30],"Graph":[31],"Convolutional":[32],"Network":[33],"(GCN)":[34],"models":[35,52,155],"developed":[36],"for":[37,130],"this":[38,94,145,177],"primarily":[40],"model":[41,97,136,165,174,178,197],"skeleton":[43],"graph":[44,77,84],"as":[45,122],"either":[46],"directed":[47,81],"or":[48,172],"undirected.":[49],"Furthermore,":[50],"these":[51],"also":[53],"restrict":[54],"receptive":[56,128,167],"field":[57,129],"temporal":[60,89,115],"domain":[61],"fixed":[64],"range":[65],"significantly":[67],"inhibits":[68],"expressive":[70,120],"power.":[71],"Therefore,":[72],"we":[73,149],"propose":[74],"mixed":[76],"network":[78],"comprising":[79],"both":[80],"and":[82,164,192],"undirected":[83],"networks":[85],"with":[86],"multi-range":[88,114],"module":[90,116],"called":[91],"MMGCN.":[92],"In":[93],"way,":[95],"can":[98,124,156],"benefit":[99],"from":[100],"interpretations":[103],"same":[106],"graphs.":[111],"Moreover,":[112],"enhances":[117],"model's":[119],"power":[121],"it":[123],"choose":[125],"appropriate":[127],"each":[131],"layer,":[132],"thus":[133,199],"allowing":[134],"dynamically":[138],"adapt":[139],"With":[144],"lightweight":[146],"MMGCN":[147],"model,":[148],"further":[150],"show":[151],"that":[152],"deep":[153],"learning":[154],"learn":[157],"underlying":[159],"data":[163],"large":[166],"fields":[168],"without":[169],"additional":[170],"semantics":[171],"high":[173],"complexity.":[175],"Finally,":[176],"achieved":[179],"state-of-the-art":[180],"results":[181],"on":[182],"three":[183],"benchmark":[184],"datasets":[185],"namely":[186],"NTU":[187,189],"RGB+D,":[188],"RGB+D":[190],"120":[191],"Northwestern-UCLA":[193],"despite":[194],"its":[195,201],"low":[196],"complexity":[198],"proving":[200],"effectiveness.":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4380301258","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-19T23:46:32.000707","created_date":"2023-06-13"}