{"id":"https://openalex.org/W4385965732","doi":"https://doi.org/10.1145/3583780.3615280","title":"S-Mixup: Structural Mixup for Graph Neural Networks","display_name":"S-Mixup: Structural Mixup for Graph Neural Networks","publication_year":2023,"publication_date":"2023-10-21","ids":{"openalex":"https://openalex.org/W4385965732","doi":"https://doi.org/10.1145/3583780.3615280"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615280","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.1145/3583780.3615280","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044221795","display_name":"J.H. Kim","orcid":"https://orcid.org/0009-0003-1629-9190"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Junghurn Kim","raw_affiliation_strings":["KAIST, Daejeon, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"KAIST, Daejeon, Republic of Korea","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053118879","display_name":"Sukwon Yun","orcid":"https://orcid.org/0000-0002-5186-6563"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sukwon Yun","raw_affiliation_strings":["KAIST, Daejeon, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"KAIST, Daejeon, Republic of Korea","institution_ids":["https://openalex.org/I157485424"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101629748","display_name":"Chanyoung Park","orcid":"https://orcid.org/0000-0002-5957-5816"},"institutions":[{"id":"https://openalex.org/I157485424","display_name":"Korea Advanced Institute of Science and Technology","ror":"https://ror.org/05apxxy63","country_code":"KR","type":"funder","lineage":["https://openalex.org/I157485424"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Chanyoung Park","raw_affiliation_strings":["KAIST, Daejeon, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"KAIST, Daejeon, Republic of Korea","institution_ids":["https://openalex.org/I157485424"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.710701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"4003","last_page":"4007"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69992745},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.48050177},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33006662}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615280","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2308.08097","pdf_url":"http://arxiv.org/pdf/2308.08097","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2308.08097","pdf_url":"https://arxiv.org/pdf/2308.08097","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2308.08097","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615280","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.44,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4385965732"],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1658064490","https://openalex.org/W2091954154","https://openalex.org/W2765407302","https://openalex.org/W2962711740","https://openalex.org/W2964015378","https://openalex.org/W2964321699","https://openalex.org/W2992308087","https://openalex.org/W3011482926","https://openalex.org/W3086731747","https://openalex.org/W3092206109","https://openalex.org/W3134509497","https://openalex.org/W3136640655","https://openalex.org/W3186377753","https://openalex.org/W3211726607","https://openalex.org/W4221150126","https://openalex.org/W4285723986","https://openalex.org/W4286901264","https://openalex.org/W4292948016","https://openalex.org/W4294558607"],"related_works":["https://openalex.org/W4402327032","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Existing":[0],"studies":[1],"for":[2,33,58,81,88,112],"applying":[3],"the":[4,16,48,79,82,85,97,102,119,123,134,140,149],"mixup":[5,31,86],"technique":[6],"on":[7,11,128,139],"graphs":[8],"mainly":[9],"focus":[10],"graph":[12,63],"classification":[13,20,35,142],"tasks,":[14],"while":[15,51],"research":[17],"in":[18,61,157],"node":[19,34,141],"is":[21,43],"still":[22],"under-explored.":[23],"In":[24],"this":[25],"paper,":[26],"we":[27,95,132],"propose":[28,106],"a":[29,62,70,107],"novel":[30],"augmentation":[32],"called":[36],"Structural":[37],"Mixup":[38],"(S-Mixup).":[39],"The":[40,160],"core":[41],"idea":[42],"to":[44,115,118],"take":[45],"into":[46],"account":[47],"structural":[49],"information":[50],"mixing":[52],"nodes.":[53],"Specifically,":[54],"S-Mixup":[55,137,147,164],"obtains":[56],"pseudo-labels":[57],"unlabeled":[59],"nodes":[60,120],"along":[64],"with":[65],"their":[66],"prediction":[67],"confidence":[68],"via":[69],"Graph":[71],"Neural":[72],"Network":[73],"(GNN)":[74],"classifier.":[75],"These":[76],"serve":[77],"as":[78],"criteria":[80],"composition":[83],"of":[84,136,154,163],"pool":[87],"both":[89],"inter":[90],"and":[91,105,151],"intra-class":[92],"mixups.":[93],"Furthermore,":[94],"utilize":[96],"edge":[98,109],"gradient":[99],"obtained":[100],"from":[101],"GNN":[103],"training":[104],"gradient-based":[108],"selection":[110],"strategy":[111],"selecting":[113],"edges":[114],"be":[116,166],"attached":[117],"generated":[121],"by":[122],"mixup.":[124],"Through":[125],"extensive":[126],"experiments":[127],"real-world":[129],"benchmark":[130],"datasets,":[131],"demonstrate":[133],"effectiveness":[135],"evaluated":[138],"task.":[143],"We":[144],"observe":[145],"that":[146],"enhances":[148],"robustness":[150],"generalization":[152],"performance":[153],"GNNs,":[155],"especially":[156],"heterophilous":[158],"situations.":[159],"source":[161],"code":[162],"can":[165],"found":[167],"at":[168],"https://github.com/SukwonYun/S-Mixup":[169]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385965732","counts_by_year":[{"year":2025,"cited_by_count":1}],"updated_date":"2025-04-16T18:35:34.222454","created_date":"2023-08-18"}