{"id":"https://openalex.org/W4387846800","doi":"https://doi.org/10.1145/3583780.3615163","title":"Segment Augmentation and Prediction Consistency Neural Network for Multi-label Unknown Intent Detection","display_name":"Segment Augmentation and Prediction Consistency Neural Network for Multi-label Unknown Intent Detection","publication_year":2023,"publication_date":"2023-10-21","ids":{"openalex":"https://openalex.org/W4387846800","doi":"https://doi.org/10.1145/3583780.3615163"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615163","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3583780.3615163","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3583780.3615163","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057834550","display_name":"Miaoxin Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Miaoxin Chen","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, Shenzhen, China","institution_ids":["https://openalex.org/I4210114105"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008909910","display_name":"Cao Liu","orcid":"https://orcid.org/0000-0001-7905-4404"},"institutions":[{"id":"https://openalex.org/I4210087373","display_name":"Meizu (China)","ror":"https://ror.org/0067g4302","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210087373"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cao Liu","raw_affiliation_strings":["Meituan, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Meituan, Beijing, China","institution_ids":["https://openalex.org/I4210087373"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101769460","display_name":"Boqi Dai","orcid":"https://orcid.org/0009-0008-3796-2541"},"institutions":[{"id":"https://openalex.org/I4210114105","display_name":"Tsinghua\u2013Berkeley Shenzhen Institute","ror":"https://ror.org/02hhwwz98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210114105","https://openalex.org/I95457486","https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Boqi Dai","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School, Shenzhen, China","institution_ids":["https://openalex.org/I4210114105"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022672030","display_name":"Hai-Tao Zheng","orcid":"https://orcid.org/0000-0001-5128-5649"},"institutions":[{"id":"https://openalex.org/I4210136793","display_name":"Peng Cheng Laboratory","ror":"https://ror.org/03qdqbt06","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210136793"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hai-Tao Zheng","raw_affiliation_strings":["Tsinghua Shenzhen International Graduate School & Pengcheng Laboratory, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua Shenzhen International Graduate School & Pengcheng Laboratory, Shenzhen, China","institution_ids":["https://openalex.org/I4210136793"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074785047","display_name":"Ting Song","orcid":"https://orcid.org/0009-0005-9019-2767"},"institutions":[{"id":"https://openalex.org/I4210087373","display_name":"Meizu (China)","ror":"https://ror.org/0067g4302","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210087373"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ting Song","raw_affiliation_strings":["Meituan, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Meituan, Beijing, China","institution_ids":["https://openalex.org/I4210087373"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021607543","display_name":"Chen Jian-song","orcid":"https://orcid.org/0000-0001-5250-3273"},"institutions":[{"id":"https://openalex.org/I4210087373","display_name":"Meizu (China)","ror":"https://ror.org/0067g4302","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210087373"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiansong Chen","raw_affiliation_strings":["Meituan, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Meituan, Beijing, China","institution_ids":["https://openalex.org/I4210087373"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072537055","display_name":"Guanglu Wan","orcid":"https://orcid.org/0009-0003-1061-3724"},"institutions":[{"id":"https://openalex.org/I4210087373","display_name":"Meizu (China)","ror":"https://ror.org/0067g4302","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210087373"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guanglu Wan","raw_affiliation_strings":["Meituan, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Meituan, Beijing, China","institution_ids":["https://openalex.org/I4210087373"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101796552","display_name":"Rui Xie","orcid":"https://orcid.org/0000-0002-1116-7418"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Rui Xie","raw_affiliation_strings":["Meituan, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Meituan, Shanghai, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.271,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.499378,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"3788","last_page":"3792"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/utterance","display_name":"Utterance","score":0.90983605},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.48092696}],"concepts":[{"id":"https://openalex.org/C2775852435","wikidata":"https://www.wikidata.org/wiki/Q258403","display_name":"Utterance","level":2,"score":0.90983605},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78058445},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.74874306},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.69744754},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.690673},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.6366411},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49925208},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.48418978},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.48092696},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47535726},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3483996},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.32525805},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.084011346},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.062177688},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615163","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3583780.3615163","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3615163","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3583780.3615163","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62276154"}],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2595551253","https://openalex.org/W2740887992","https://openalex.org/W2946085385","https://openalex.org/W2952409498","https://openalex.org/W2963924212","https://openalex.org/W2964142373","https://openalex.org/W2997140799","https://openalex.org/W3121064530","https://openalex.org/W3176143090","https://openalex.org/W3208705495","https://openalex.org/W4385573163"],"related_works":["https://openalex.org/W3177678247","https://openalex.org/W2944572343","https://openalex.org/W2529301793","https://openalex.org/W2384121599","https://openalex.org/W2351687372","https://openalex.org/W2333799855","https://openalex.org/W2314871050","https://openalex.org/W2038083449","https://openalex.org/W2004087835","https://openalex.org/W1999617572"],"abstract_inverted_index":{"Multi-label":[0],"unknown":[1,19,52],"intent":[2,30,44,92],"detection":[3],"is":[4,73],"a":[5,122],"challenging":[6],"task":[7],"where":[8],"each":[9],"utterance":[10,34,50,81,112],"may":[11],"contain":[12],"not":[13],"only":[14,80,110],"multiple":[15,77,117],"known":[16,43,91],"but":[17],"also":[18,120],"intents.":[20,118],"To":[21],"tackle":[22],"this":[23,61,100],"challenge,":[24],"pioneers":[25],"proposed":[26],"to":[27,46,75,96,104,114,126],"predict":[28],"the":[29,33,40,49,128,131,147],"number":[31,88],"of":[32,42],"first,":[35],"then":[36],"compare":[37],"it":[38],"with":[39],"results":[41,135],"matching":[45],"decide":[47],"whether":[48],"contains":[51],"intent(s).":[53],"Though":[54],"they":[55],"have":[56],"made":[57],"remarkable":[58],"progress":[59],"on":[60,136],"task,":[62],"their":[63],"method":[64,141],"still":[65],"suffers":[66],"from":[67],"two":[68,85,132],"important":[69],"issues:":[70],"1)":[71],"It":[72],"inadequate":[74],"extract":[76],"intents":[78],"using":[79],"encoding;":[82],"2)":[83],"Optimizing":[84],"sub-tasks":[86],"(intent":[87],"prediction":[89,123],"and":[90,145],"matching)":[93],"independently":[94],"leads":[95],"inconsistent":[97],"predictions.":[98],"In":[99],"paper,":[101],"we":[102],"propose":[103],"incorporate":[105],"segment":[106],"augmentation":[107],"rather":[108],"than":[109],"use":[111],"encoding":[113],"better":[115],"detect":[116],"We":[119],"design":[121],"consistency":[124],"module":[125],"bridge":[127],"gap":[129],"between":[130],"sub-tasks.":[133],"Empirical":[134],"MultiWOZ2.3":[137],"show":[138],"that":[139],"our":[140],"achieves":[142],"state-of-the-art":[143],"performance":[144],"improves":[146],"best":[148],"baseline":[149],"significantly.":[150]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387846800","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-22T20:57:55.880307","created_date":"2023-10-22"}