{"id":"https://openalex.org/W4387848930","doi":"https://doi.org/10.1145/3583780.3614974","title":"MPerformer: An SE(3) Transformer-based Molecular Perceptron","display_name":"MPerformer: An SE(3) Transformer-based Molecular Perceptron","publication_year":2023,"publication_date":"2023-10-21","ids":{"openalex":"https://openalex.org/W4387848930","doi":"https://doi.org/10.1145/3583780.3614974"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3614974","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1145/3583780.3614974","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068997788","display_name":"Fanmeng Wang","orcid":"https://orcid.org/0009-0002-2287-2339"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"funder","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fanmeng Wang","raw_affiliation_strings":["Renmin University of China & DP Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China & DP Technology, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035141289","display_name":"Hongteng Xu","orcid":"https://orcid.org/0000-0003-4192-5360"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"funder","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongteng Xu","raw_affiliation_strings":["Renmin University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103145478","display_name":"Xi Chen","orcid":"https://orcid.org/0009-0007-1252-9357"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xi Chen","raw_affiliation_strings":["DP Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"DP Technology, Beijing, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066529827","display_name":"Sean Daniel M. Lu","orcid":"https://orcid.org/0009-0009-9789-8235"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuqi Lu","raw_affiliation_strings":["DP Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"DP Technology, Beijing, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103248563","display_name":"Yuqing Deng","orcid":"https://orcid.org/0009-0006-0427-852X"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuqing Deng","raw_affiliation_strings":["DP Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"DP Technology, Beijing, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032642601","display_name":"Wenbing Huang","orcid":"https://orcid.org/0000-0002-2566-4159"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"funder","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenbing Huang","raw_affiliation_strings":["Renmin University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.32,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.630732,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"2512","last_page":"2522"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12327","display_name":"Various Chemistry Research Topics","score":0.9815,"subfield":{"id":"https://openalex.org/subfields/1606","display_name":"Physical and Theoretical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.51487267},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.46283272}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.674398},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.51487267},{"id":"https://openalex.org/C27158222","wikidata":"https://www.wikidata.org/wiki/Q5532422","display_name":"Generalizability theory","level":2,"score":0.48061293},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.46283272},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45005062},{"id":"https://openalex.org/C186060115","wikidata":"https://www.wikidata.org/wiki/Q30336093","display_name":"Biological system","level":1,"score":0.35313973},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34353378},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.28666726},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1282418},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.09173828},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.089809895},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3614974","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3583780.3614974","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62106271, 92270110"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1555858756","https://openalex.org/W2000061529","https://openalex.org/W2015688756","https://openalex.org/W2028046413","https://openalex.org/W2032245355","https://openalex.org/W2049126012","https://openalex.org/W2050303184","https://openalex.org/W2066400775","https://openalex.org/W2073404468","https://openalex.org/W2114363966","https://openalex.org/W2118420027","https://openalex.org/W2169678694","https://openalex.org/W2213601517","https://openalex.org/W2471232847","https://openalex.org/W2907492528","https://openalex.org/W2925682697","https://openalex.org/W2963351448","https://openalex.org/W2973114758","https://openalex.org/W3036737467","https://openalex.org/W3038445625","https://openalex.org/W3095883070","https://openalex.org/W3101643101","https://openalex.org/W3126613532","https://openalex.org/W3141797743","https://openalex.org/W3207373390","https://openalex.org/W3209708391","https://openalex.org/W3209764902","https://openalex.org/W3209951118","https://openalex.org/W3210070012","https://openalex.org/W4213077304","https://openalex.org/W4214868967","https://openalex.org/W4221138292","https://openalex.org/W4241944118","https://openalex.org/W4306317004","https://openalex.org/W4306317062","https://openalex.org/W4306317286","https://openalex.org/W4306317320","https://openalex.org/W4306317971","https://openalex.org/W4323304388","https://openalex.org/W569478347"],"related_works":["https://openalex.org/W4225593417","https://openalex.org/W410723623","https://openalex.org/W3160494304","https://openalex.org/W3022298670","https://openalex.org/W2573498121","https://openalex.org/W2413243053","https://openalex.org/W2156260160","https://openalex.org/W2118717649","https://openalex.org/W2035068594","https://openalex.org/W2015341305"],"abstract_inverted_index":{"Molecular":[0],"perception":[1,64,72,167],"aims":[2],"to":[3,82,105,121],"construct":[4,106],"3D":[5,8,16,59,84,107,110],"molecules":[6,108],"from":[7,109],"atom":[9,12,60,111,138],"clouds":[10,112],"(i.e.,":[11],"types":[13],"and":[14,23,38,80,136,150,154,171],"corresponding":[15],"coordinates),":[17],"determining":[18],"bond":[19,21],"connections,":[20],"orders,":[22],"other":[24],"molecular":[25,45,52,58,63,71,101,148,166,175],"attributes":[26,149],"within":[27],"molecules.":[28],"It":[29],"is":[30,89],"essential":[31],"for":[32],"realizing":[33],"many":[34,51],"applications":[35],"in":[36,47,169],"cheminformatics":[37],"bioinformatics,":[39],"such":[40],"as":[41,65],"modeling":[42],"quantum":[43],"chemistry-derived":[44],"structures":[46],"protein-ligand":[48],"complexes.":[49],"Additionally,":[50],"generation":[53,176],"methods":[54,73,168],"can":[55],"only":[56],"generate":[57],"clouds,":[61],"requiring":[62],"a":[66,117],"necessary":[67],"post-processing.":[68],"However,":[69],"existing":[70],"mainly":[74],"rely":[75],"on":[76],"predefined":[77],"chemical":[78],"rules":[79],"fail":[81],"leverage":[83],"geometric":[85],"information,":[86],"whose":[87],"performance":[88],"sub-optimal":[90],"fully.":[91],"In":[92,125],"this":[93,123],"study,":[94],"we":[95,115,129],"propose":[96,116],"MPerformer,":[97],"an":[98,132,137],"SE(3)":[99],"Transformer-based":[100],"perceptron":[102],"exhibiting":[103],"SE(3)-invariance,":[104],"efficiently.":[113],"Besides,":[114],"multi-task":[118],"pretraining-and-finetuning":[119],"paradigm":[120],"learn":[122],"model.":[124,158],"the":[126,143,152,157],"pretraining":[127],"phase,":[128],"jointly":[130],"minimize":[131],"attribute":[133],"prediction":[134],"loss":[135],"cloud":[139],"reconstruction":[140],"loss,":[141],"mitigating":[142],"data":[144],"imbalance":[145],"issue":[146],"of":[147,156],"enhancing":[151],"robustness":[153],"generalizability":[155],"Experiments":[159],"show":[160],"that":[161],"MPerformer":[162],"significantly":[163],"outperforms":[164],"state-of-the-art":[165],"precision":[170],"robustness,":[172],"benefiting":[173],"various":[174],"scenarios.":[177]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387848930","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-08T11:32:43.919231","created_date":"2023-10-22"}