{"id":"https://openalex.org/W4377236358","doi":"https://doi.org/10.1145/3581807.3581854","title":"ResAsapp: An Effective Convolution to Distinguish Adjacent Pixels For Scene Text Detection","display_name":"ResAsapp: An Effective Convolution to Distinguish Adjacent Pixels For Scene Text Detection","publication_year":2022,"publication_date":"2022-11-17","ids":{"openalex":"https://openalex.org/W4377236358","doi":"https://doi.org/10.1145/3581807.3581854"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3581807.3581854","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091993532","display_name":"Kangming Weng","orcid":"https://orcid.org/0000-0002-0537-017X"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kangming Weng","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022975807","display_name":"Xia Du","orcid":"https://orcid.org/0000-0002-6298-846X"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xia Du","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005792711","display_name":"K. Chen","orcid":"https://orcid.org/0000-0003-2201-3999"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kunze Chen","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032628425","display_name":"Da\u2010Han Wang","orcid":"https://orcid.org/0000-0002-5901-0778"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dahan Wang","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011118010","display_name":"Shunzhi Zhu","orcid":"https://orcid.org/0000-0001-9715-4281"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shunzhi Zhu","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9835,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.9811,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.7231623},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.61908746},{"id":"https://openalex.org/keywords/text-detection","display_name":"Text Detection","score":0.5445736}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7685597},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.7231623},{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.71849656},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69667524},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.6796334},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.67463017},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.61908746},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.55842763},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.55379397},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5469083},{"id":"https://openalex.org/C2983589003","wikidata":"https://www.wikidata.org/wiki/Q167555","display_name":"Text detection","level":3,"score":0.5445736},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.54178673},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.48170072},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.47879633},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42529798},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3952272},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.20500633},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16662109},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.09042588},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.06996873},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.06192106},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3581807.3581854","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.44,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1903029394","https://openalex.org/W2132083787","https://openalex.org/W2194775991","https://openalex.org/W2339589954","https://openalex.org/W2412782625","https://openalex.org/W2565639579","https://openalex.org/W2605076167","https://openalex.org/W2963516811","https://openalex.org/W2963647456","https://openalex.org/W2963977642","https://openalex.org/W2968226676","https://openalex.org/W2981969038","https://openalex.org/W2991626090","https://openalex.org/W2998621280","https://openalex.org/W3106228955","https://openalex.org/W3181016597","https://openalex.org/W4301409532"],"related_works":["https://openalex.org/W4390494008","https://openalex.org/W4285411112","https://openalex.org/W2922442631","https://openalex.org/W2171299904","https://openalex.org/W2168523118","https://openalex.org/W2106540031","https://openalex.org/W2085033728","https://openalex.org/W2073639911","https://openalex.org/W2053596378","https://openalex.org/W2043988397"],"abstract_inverted_index":{"The":[0,85],"segmentation-based":[1,35],"approach":[2],"is":[3,88,118],"an":[4,125],"essential":[5],"direction":[6],"of":[7,25,83,108,115,127],"scene":[8],"text":[9,48,111],"detection,":[10],"and":[11,43,76,96],"it":[12,78],"can":[13,67],"detect":[14],"arbitrary":[15],"or":[16],"curved":[17],"text,":[18],"which":[19,117],"has":[20,31],"attracted":[21],"the":[22,34,47,61,74,81,102],"increasing":[23],"attention":[24],"many":[26],"researchers.":[27],"However,":[28],"extensive":[29],"research":[30],"shown":[32],"that":[33],"method":[36],"will":[37],"be":[38],"disturbed":[39],"by":[40],"adjoining":[41],"pixels":[42],"cannot":[44],"effectively":[45,79],"identify":[46],"boundaries.":[49],"To":[50],"tackle":[51],"this":[52],"problem,":[53],"we":[54],"proposed":[55],"a":[56,105],"ResAsapp":[57],"Conv":[58],"based":[59],"on":[60,90,101],"PSE":[62],"algorithm.":[63],"This":[64],"convolution":[65],"structure":[66],"provide":[68],"different":[69],"scale":[70],"visual":[71],"fields":[72],"about":[73],"object":[75],"make":[77],"recognize":[80],"boundary":[82],"texts.":[84],"method's":[86],"effectiveness":[87],"validated":[89],"three":[91],"benchmark":[92],"datasets,":[93],"CTW1500,":[94],"Total-Text,":[95],"ICDAR2015":[97],"datasets.":[98],"In":[99],"particular,":[100],"CTW1500":[103],"dataset,":[104],"dataset":[106],"full":[107],"long":[109],"curve":[110],"in":[112],"all":[113],"kinds":[114],"scenes,":[116],"hard":[119],"to":[120],"distinguish,":[121],"our":[122],"network":[123],"achieves":[124],"F-measure":[126],"81.2%.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377236358","counts_by_year":[],"updated_date":"2024-12-08T11:45:37.409021","created_date":"2023-05-23"}