{"id":"https://openalex.org/W4377236334","doi":"https://doi.org/10.1145/3581807.3581829","title":"A Lightweight Brain Tumor Segmentation Network Based on 3D Inverted Residual Modules","display_name":"A Lightweight Brain Tumor Segmentation Network Based on 3D Inverted Residual Modules","publication_year":2022,"publication_date":"2022-11-17","ids":{"openalex":"https://openalex.org/W4377236334","doi":"https://doi.org/10.1145/3581807.3581829"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3581807.3581829","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081792330","display_name":"Yuchao Liu","orcid":"https://orcid.org/0009-0006-5207-4521"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuchao Liu","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022975807","display_name":"Xia Du","orcid":"https://orcid.org/0000-0002-6298-846X"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xia Du","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032628425","display_name":"Da\u2010Han Wang","orcid":"https://orcid.org/0000-0002-5901-0778"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Da-Han Wang","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011118010","display_name":"Shunzhi Zhu","orcid":"https://orcid.org/0000-0001-9715-4281"},"institutions":[{"id":"https://openalex.org/I75867142","display_name":"Xiamen University of Technology","ror":"https://ror.org/01285e189","country_code":"CN","type":"education","lineage":["https://openalex.org/I75867142"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shunzhi Zhu","raw_affiliation_strings":["Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China"],"affiliations":[{"raw_affiliation_string":"Fujian Key Laboratory of Pattern Recognition and Image Understanding, Xiamen University of Technology, China","institution_ids":["https://openalex.org/I75867142"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.446,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.62869,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.71578616},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.7100437}],"concepts":[{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.8162632},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.76448834},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7437844},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.71578616},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.7100437},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54052883},{"id":"https://openalex.org/C70710897","wikidata":"https://www.wikidata.org/wiki/Q680081","display_name":"Separable space","level":2,"score":0.45245773},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44670662},{"id":"https://openalex.org/C179799912","wikidata":"https://www.wikidata.org/wiki/Q205084","display_name":"Computational complexity theory","level":2,"score":0.42490527},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3725692},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2743096},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.19339004},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11455873},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10708043},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3581807.3581829","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1549358575","https://openalex.org/W1903029394","https://openalex.org/W2097117768","https://openalex.org/W2194775991","https://openalex.org/W2412782625","https://openalex.org/W2560023338","https://openalex.org/W3112701542","https://openalex.org/W3135467317","https://openalex.org/W4236965008"],"related_works":["https://openalex.org/W4308155352","https://openalex.org/W4299366318","https://openalex.org/W4297580547","https://openalex.org/W3158431807","https://openalex.org/W2995343971","https://openalex.org/W2992221004","https://openalex.org/W2982536526","https://openalex.org/W2951583185","https://openalex.org/W2582836483","https://openalex.org/W2530952058"],"abstract_inverted_index":{"Semantic":[0],"segmentation":[1,25,62],"technology":[2],"based":[3],"on":[4,81],"deep":[5],"learning":[6],"has":[7],"played":[8],"an":[9,98],"important":[10],"role":[11],"for":[12,27],"doctors":[13],"in":[14,48],"identifying":[15],"brain":[16,28,60,94,107],"tumor":[17,61,95,108],"regions":[18],"and":[19,32,50,120,125,132,150],"formulating":[20],"treatment":[21],"plans.":[22],"Popular":[23],"automated":[24],"methods":[26],"tumors":[29],"include":[30],"2D":[31],"3D":[33,37,66,78,88,148],"convolution":[34],"networks.":[35],"The":[36,135],"networks":[38],"give":[39],"better":[40],"results":[41,136],"but":[42],"lead":[43],"to":[44],"a":[45,58,82],"significant":[46],"increase":[47],"parameters":[49,131],"computational":[51,75],"cost.":[52],"In":[53],"this":[54],"paper,":[55],"we":[56],"propose":[57],"lightweight":[59,83],"network":[63,113],"composed":[64],"of":[65,77,117,146],"inverted":[67,89],"residual":[68,90],"modules,":[69],"which":[70],"can":[71,141],"significantly":[72,142],"reduce":[73,143],"the":[74,106,144,147],"complexity":[76,145],"models.":[79],"Based":[80],"depthwise":[84],"separable":[85],"convolution,":[86],"our":[87,112,139],"module":[91],"extracts":[92],"high-dimensional":[93],"features":[96],"through":[97],"intermediate":[99],"expansion":[100],"layer,":[101],"thus":[102],"improving":[103],"performance.":[104,154],"On":[105],"dataset":[109],"BraTS":[110],"2018,":[111],"achieves":[114],"dice":[115],"scores":[116],"80.8%,":[118],"90.7%,":[119],"84.3%":[121],"(for":[122],"ET,":[123],"WT,":[124],"TC,":[126],"respectively)":[127],"with":[128],"only":[129],"0.68M":[130],"51.46G":[133],"FLOPs.":[134],"show":[137],"that":[138],"method":[140],"model":[149],"achieve":[151],"very":[152],"competitive":[153]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4377236334","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-10T22:05:45.449570","created_date":"2023-05-23"}