{"id":"https://openalex.org/W4387968397","doi":"https://doi.org/10.1145/3581783.3612350","title":"Improving Federated Person Re-Identification through Feature-Aware Proximity and Aggregation","display_name":"Improving Federated Person Re-Identification through Feature-Aware Proximity and Aggregation","publication_year":2023,"publication_date":"2023-10-26","ids":{"openalex":"https://openalex.org/W4387968397","doi":"https://doi.org/10.1145/3581783.3612350"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3581783.3612350","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1145/3581783.3612350","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053414961","display_name":"Pengling Zhang","orcid":"https://orcid.org/0009-0002-2753-2245"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengling Zhang","raw_affiliation_strings":["Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043992452","display_name":"Huibin Yan","orcid":null},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huibin Yan","raw_affiliation_strings":["Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081114494","display_name":"Wenhui Wu","orcid":"https://orcid.org/0000-0002-0416-7719"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenhui Wu","raw_affiliation_strings":["Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068468945","display_name":"Shuoyao Wang","orcid":"https://orcid.org/0000-0003-1395-4383"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuoyao Wang","raw_affiliation_strings":["Shenzhen University, Shenzhen University, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen University, Shenzhen University, China","institution_ids":["https://openalex.org/I180726961"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.445,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.440506,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"2498","last_page":"2506"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.735723},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.6928508},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.5371889},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4950575},{"id":"https://openalex.org/keywords/data-aggregator","display_name":"Data aggregator","score":0.4557639}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.86072755},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.735723},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.6928508},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.5371889},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.49805093},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4950575},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48714063},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4631158},{"id":"https://openalex.org/C82578977","wikidata":"https://www.wikidata.org/wiki/Q16773055","display_name":"Data aggregator","level":3,"score":0.4557639},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45152938},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3581783.3612350","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3581783.3612350","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.53,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62101336"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1518138188","https://openalex.org/W1596233070","https://openalex.org/W1982925187","https://openalex.org/W2187089797","https://openalex.org/W2585635281","https://openalex.org/W2591488409","https://openalex.org/W2946574625","https://openalex.org/W2963047834","https://openalex.org/W2963842104","https://openalex.org/W2963975998","https://openalex.org/W3010376436","https://openalex.org/W3033112120","https://openalex.org/W3035067471","https://openalex.org/W3047929456","https://openalex.org/W3095799614","https://openalex.org/W3096285474","https://openalex.org/W3100506510","https://openalex.org/W3100760018","https://openalex.org/W3115695930","https://openalex.org/W3166601111","https://openalex.org/W3169044395","https://openalex.org/W3173909755","https://openalex.org/W3175474559","https://openalex.org/W3182158470","https://openalex.org/W3205959870","https://openalex.org/W4200635168","https://openalex.org/W4224224340","https://openalex.org/W4226183928","https://openalex.org/W4312352414","https://openalex.org/W760855798"],"related_works":["https://openalex.org/W4312762663","https://openalex.org/W43109613","https://openalex.org/W4298221930","https://openalex.org/W4287823391","https://openalex.org/W3162204513","https://openalex.org/W3013363440","https://openalex.org/W2793666424","https://openalex.org/W2777914285","https://openalex.org/W2371138613","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Person":[0],"re-identification":[1],"(ReID)":[2],"is":[3,27],"a":[4,42,80,100,104],"challenging":[5],"task":[6],"that":[7],"aims":[8],"to":[9,29,45,92,112,131],"identify":[10],"individuals":[11],"across":[12],"multiple":[13,33],"non-overlapping":[14],"camera":[15],"views.":[16],"To":[17,56],"enhance":[18],"the":[19,37,62,125,133,146,151,157],"performance":[20,147],"and":[21,85,103,148,176],"robustness":[22],"of":[23,128,137,150,159],"ReID":[24,91],"models,":[25],"it":[26,48],"crucial":[28],"train":[30],"them":[31],"over":[32],"data":[34,51,54,73],"sources.":[35],"However,":[36],"traditional":[38],"centralized":[39],"approach":[40],"poses":[41],"significant":[43],"challenge":[44],"privacy":[46],"as":[47],"requires":[49],"collecting":[50],"from":[52],"distributed":[53,68],"owners.":[55],"overcome":[57],"this":[58,76],"challenge,":[59],"we":[60,78,98,123],"employ":[61],"federated":[63,90,173,187],"learning":[64],"approach,":[65],"which":[66],"enables":[67],"model":[69,110],"training":[70,111,115],"without":[71],"compromising":[72],"privacy.":[74],"In":[75],"paper,":[77],"propose":[79],"novel":[81],"feature-aware":[82],"local":[83,109,114,139],"proximity":[84],"global":[86,119,134,152],"aggregation":[87,120,135],"method":[88,143,164],"for":[89,108],"extract":[93],"robust":[94],"feature":[95,105],"representations.":[96],"Specifically,":[97,162],"introduce":[99],"proximal":[101],"term":[102,107],"regularization":[106],"improve":[113],"accuracy":[116,171],"while":[117],"ensuring":[118],"convergence.":[121],"Furthermore,":[122],"use":[124],"cosine":[126],"distance":[127],"backbone":[129],"features":[130],"determine":[132],"weight":[136],"each":[138],"model.":[140,153],"Our":[141],"proposed":[142],"significantly":[144],"improves":[145],"generalization":[149],"Extensive":[154],"experiments":[155],"demonstrate":[156],"effectiveness":[158],"our":[160,163],"proposal.":[161],"achieves":[165],"an":[166,177],"additional":[167],"27.3%":[168],"Rank-1":[169],"average":[170],"in":[172,186],"full":[174],"supervision":[175],"extra":[178],"20.3%":[179],"mean":[180],"Average":[181],"Precision":[182],"(mAP)":[183],"on":[184],"DukeMTMC":[185],"domain":[188],"generalization.":[189]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387968397","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-16T09:29:40.497876","created_date":"2023-10-28"}