{"id":"https://openalex.org/W4385567698","doi":"https://doi.org/10.1145/3580305.3599923","title":"UA-FedRec: Untargeted Attack on Federated News Recommendation","display_name":"UA-FedRec: Untargeted Attack on Federated News Recommendation","publication_year":2023,"publication_date":"2023-08-04","ids":{"openalex":"https://openalex.org/W4385567698","doi":"https://doi.org/10.1145/3580305.3599923"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599923","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.1145/3580305.3599923","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023080342","display_name":"Jingwei Yi","orcid":"https://orcid.org/0009-0001-2786-6395"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingwei Yi","raw_affiliation_strings":["University of Science and Technology of China, Anhui, China"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Anhui, China","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076423724","display_name":"Fangzhao Wu","orcid":"https://orcid.org/0000-0001-9138-1272"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangzhao Wu","raw_affiliation_strings":["Microsoft Research Asia, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft Research Asia, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101883857","display_name":"Bin Zhu","orcid":"https://orcid.org/0000-0002-3571-7808"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Zhu","raw_affiliation_strings":["Microsoft Research Asia, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft Research Asia, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084847804","display_name":"Jing Yao","orcid":"https://orcid.org/0000-0002-0527-6095"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Yao","raw_affiliation_strings":["Microsoft Research Asia, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft Research Asia, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019100110","display_name":"Zhulin Tao","orcid":"https://orcid.org/0000-0001-9011-8464"},"institutions":[{"id":"https://openalex.org/I75689368","display_name":"Communication University of China","ror":"https://ror.org/04facbs33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I75689368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhulin Tao","raw_affiliation_strings":["Communication University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Communication University of China, Beijing, China","institution_ids":["https://openalex.org/I75689368"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100932403","display_name":"Guangzhong Sun","orcid":"https://orcid.org/0000-0002-0794-7681"},"institutions":[{"id":"https://openalex.org/I126520041","display_name":"University of Science and Technology of China","ror":"https://ror.org/04c4dkn09","country_code":"CN","type":"funder","lineage":["https://openalex.org/I126520041","https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangzhong Sun","raw_affiliation_strings":["University of Science and Technology of China, Hefei, Colombia"],"affiliations":[{"raw_affiliation_string":"University of Science and Technology of China, Hefei, Colombia","institution_ids":["https://openalex.org/I126520041"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044651577","display_name":"Xing Xie","orcid":"https://orcid.org/0000-0002-8608-8482"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xing Xie","raw_affiliation_strings":["Microsoft Research Asia, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft Research Asia, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.163,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.999835,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"5428","last_page":"5438"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.4318219}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8649161},{"id":"https://openalex.org/C41661131","wikidata":"https://www.wikidata.org/wiki/Q220764","display_name":"Interrupt","level":3,"score":0.60886276},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.5880353},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.44780245},{"id":"https://openalex.org/C21569690","wikidata":"https://www.wikidata.org/wiki/Q94702","display_name":"Collaborative filtering","level":3,"score":0.43645456},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.4318219},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.40772945},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.108700305},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C761482","wikidata":"https://www.wikidata.org/wiki/Q118093","display_name":"Transmission (telecommunications)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599923","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2202.06701","pdf_url":"http://arxiv.org/pdf/2202.06701","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599923","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.65,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1989279326","https://openalex.org/W2742272831","https://openalex.org/W2789607830","https://openalex.org/W2950416834","https://openalex.org/W2963869731","https://openalex.org/W2964536660","https://openalex.org/W3004155269","https://openalex.org/W3034236656","https://openalex.org/W3034790665","https://openalex.org/W3064112253","https://openalex.org/W3080710500","https://openalex.org/W3081273427","https://openalex.org/W3088573320","https://openalex.org/W3102496129","https://openalex.org/W3155368131","https://openalex.org/W3174178850","https://openalex.org/W3182452706","https://openalex.org/W3199223935","https://openalex.org/W4289548688","https://openalex.org/W4290944580"],"related_works":["https://openalex.org/W2977378428","https://openalex.org/W2573253449","https://openalex.org/W2511071455","https://openalex.org/W2402445420","https://openalex.org/W2377968345","https://openalex.org/W2369194530","https://openalex.org/W2348159088","https://openalex.org/W2126026531","https://openalex.org/W2075040002","https://openalex.org/W1773619406"],"abstract_inverted_index":{"News":[0],"recommendation":[1,38,57,67,90,204,222],"is":[2,24,39,209,235],"essential":[3],"for":[4,28,226],"personalized":[5],"news":[6,9,37,56,66,89,97,102,111,117,121,203,221],"distribution.":[7],"Federated":[8],"recommendation,":[10],"which":[11],"enables":[12],"collaborative":[13],"model":[14,76,127],"learning":[15],"from":[16,147],"multiple":[17],"clients":[18,149,174],"without":[19],"sharing":[20],"their":[21,159],"raw":[22],"data,":[23],"a":[25,79,101,125,154,164,176,214],"promising":[26],"approach":[27],"preserving":[29],"users'":[30],"privacy.":[31],"However,":[32],"the":[33,62,75,86,181,198,231],"security":[34,216],"of":[35,65,82,88,109,115,138,172,183,200],"federated":[36,55,69,202,220],"still":[40],"unclear.":[41],"In":[42],"this":[43,47],"paper,":[44],"we":[45],"study":[46,212],"problem":[48],"by":[49],"proposing":[50],"an":[51],"untargeted":[52],"attack":[53],"on":[54,93,158,188],"called":[58],"UA-FedRec.":[59],"By":[60],"exploiting":[61],"prior":[63],"knowledge":[64],"and":[68,96,113,123,224],"learning,":[70],"UA-FedRec":[71,194],"can":[72,195],"effectively":[73,196],"degrade":[74,197],"performance":[77],"with":[78,153],"small":[80],"percentage":[81],"malicious":[83,132,173,184],"clients.":[84],"First,":[85],"effectiveness":[87],"highly":[91],"depends":[92],"user":[94,126,133,143],"modeling":[95],"modeling.":[98,144],"We":[99,162],"design":[100],"similarity":[103],"perturbation":[104,128,166],"method":[105,129,167],"to":[106,119,130,141,168,179,229],"make":[107,131],"representations":[108],"similar":[110],"farther":[112],"those":[114],"dissimilar":[116],"closer":[118],"interrupt":[120,142],"modeling,":[122],"propose":[124,163],"updates":[134,140,146],"in":[135,175,218],"opposite":[136],"directions":[137],"benign":[139],"Second,":[145],"different":[148],"are":[150],"typically":[151],"aggregated":[152],"weighted":[155],"average":[156],"based":[157],"sample":[160,170],"sizes.":[161],"quantity":[165],"enlarge":[169],"sizes":[171],"reasonable":[177],"range":[178],"amplify":[180],"impact":[182],"updates.":[185],"Extensive":[186],"experiments":[187],"two":[189],"real-world":[190],"datasets":[191],"show":[192],"that":[193],"accuracy":[199],"existing":[201,219],"methods,":[205],"even":[206],"when":[207],"defense":[208],"applied.":[210],"Our":[211,233],"reveals":[213],"critical":[215],"issue":[217],"systems":[223],"calls":[225],"research":[227],"efforts":[228],"address":[230],"issue.":[232],"code":[234],"available":[236],"at":[237],"https://github.com/yjw1029/UA-FedRec.":[238]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385567698","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-05T21:25:27.088210","created_date":"2023-08-05"}