{"id":"https://openalex.org/W4385568119","doi":"https://doi.org/10.1145/3580305.3599794","title":"Contextual Self-attentive Temporal Point Process for Physical Decommissioning Prediction of Cloud Assets","display_name":"Contextual Self-attentive Temporal Point Process for Physical Decommissioning Prediction of Cloud Assets","publication_year":2023,"publication_date":"2023-08-04","ids":{"openalex":"https://openalex.org/W4385568119","doi":"https://doi.org/10.1145/3580305.3599794"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599794","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1145/3580305.3599794","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101564849","display_name":"Fangkai Yang","orcid":"https://orcid.org/0000-0002-3089-0345"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangkai Yang","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100752551","display_name":"Jue Zhang","orcid":"https://orcid.org/0000-0003-0472-9168"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jue Zhang","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083964854","display_name":"Lu Wang","orcid":"https://orcid.org/0000-0002-7305-1496"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lu Wang","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049886136","display_name":"Bo Qiao","orcid":"https://orcid.org/0000-0002-8997-8317"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Qiao","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088199295","display_name":"Di Weng","orcid":"https://orcid.org/0000-0003-2712-7274"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Di Weng","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101848858","display_name":"Xiaoting Qin","orcid":"https://orcid.org/0000-0003-3631-9024"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoting Qin","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015758593","display_name":"Gregory J. Weber","orcid":"https://orcid.org/0009-0008-0574-0995"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gregory Weber","raw_affiliation_strings":["Microsoft, Redmond, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087418975","display_name":"Durgesh Nandini Das","orcid":"https://orcid.org/0009-0002-0143-9288"},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Durgesh Nandini Das","raw_affiliation_strings":["Microsoft, Telangana, India"],"affiliations":[{"raw_affiliation_string":"Microsoft, Telangana, India","institution_ids":["https://openalex.org/I4210162141"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092595891","display_name":"Srinivasan Rakhunathan","orcid":"https://orcid.org/0009-0003-6507-9485"},"institutions":[{"id":"https://openalex.org/I4210162141","display_name":"Microsoft (India)","ror":"https://ror.org/04ww0w091","country_code":"IN","type":"company","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210162141"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Srinivasan Rakhunathan","raw_affiliation_strings":["Microsoft, Telangana, India"],"affiliations":[{"raw_affiliation_string":"Microsoft, Telangana, India","institution_ids":["https://openalex.org/I4210162141"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018960252","display_name":"Ranganathan Srikanth","orcid":"https://orcid.org/0009-0001-9710-5719"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ranganathan Srikanth","raw_affiliation_strings":["Microsoft, Redmond, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft, Redmond, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088646345","display_name":"Qingwei Lin","orcid":"https://orcid.org/0000-0003-2559-2383"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingwei Lin","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100331488","display_name":"Dongmei Zhang","orcid":"https://orcid.org/0000-0002-9230-2799"},"institutions":[{"id":"https://openalex.org/I4210113369","display_name":"Microsoft Research Asia (China)","ror":"https://ror.org/0300m5276","country_code":"CN","type":"funder","lineage":["https://openalex.org/I1290206253","https://openalex.org/I4210113369"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dongmei Zhang","raw_affiliation_strings":["Microsoft, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Microsoft, Beijing, China","institution_ids":["https://openalex.org/I4210113369"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.486,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.616848,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"5372","last_page":"5381"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10753","display_name":"Microplastics and Plastic Pollution","score":0.9224,"subfield":{"id":"https://openalex.org/subfields/2310","display_name":"Pollution"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10753","display_name":"Microplastics and Plastic Pollution","score":0.9224,"subfield":{"id":"https://openalex.org/subfields/2310","display_name":"Pollution"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nuclear-decommissioning","display_name":"Nuclear decommissioning","score":0.8954476},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.45135295}],"concepts":[{"id":"https://openalex.org/C175349315","wikidata":"https://www.wikidata.org/wiki/Q1938123","display_name":"Nuclear decommissioning","level":2,"score":0.8954476},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.80455685},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7557497},{"id":"https://openalex.org/C177212765","wikidata":"https://www.wikidata.org/wiki/Q627335","display_name":"Workflow","level":2,"score":0.71816623},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5953154},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.45135295},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4327822},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.4213444},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.41882667},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.41510144},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.37485307},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.36705202},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2013078},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12243363},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C548081761","wikidata":"https://www.wikidata.org/wiki/Q180388","display_name":"Waste management","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599794","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3580305.3599794","pdf_url":null,"source":{"id":"https://openalex.org/S4363608767","display_name":"Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.43,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2509830164","https://openalex.org/W2548087597","https://openalex.org/W2605191235","https://openalex.org/W2911826336","https://openalex.org/W2964182926","https://openalex.org/W3122471732","https://openalex.org/W3197994742","https://openalex.org/W4214717370","https://openalex.org/W4253352393","https://openalex.org/W4290944070","https://openalex.org/W4315647768"],"related_works":["https://openalex.org/W93335233","https://openalex.org/W4234929297","https://openalex.org/W3216614199","https://openalex.org/W2905438468","https://openalex.org/W2384153412","https://openalex.org/W2346806197","https://openalex.org/W2317286314","https://openalex.org/W2185669471","https://openalex.org/W1976426536","https://openalex.org/W1575450301"],"abstract_inverted_index":{"As":[0],"cloud":[1,14,32,40],"computing":[2],"continues":[3],"to":[4,65,122],"expand":[5],"globally,":[6],"the":[7,27,97,101],"need":[8],"for":[9],"effective":[10],"management":[11,43],"of":[12,31],"decommissioned":[13],"assets":[15,33],"in":[16,38,88,113],"data":[17,45,91],"centers":[18],"becomes":[19],"increasingly":[20],"important.":[21],"This":[22,116],"work":[23],"focuses":[24],"on":[25],"predicting":[26],"physical":[28],"decommissioning":[29,50],"date":[30],"as":[34,54],"a":[35,55],"crucial":[36],"component":[37],"reverse":[39],"supply":[41],"chain":[42],"and":[44,71,85,107],"center":[46],"warehouse":[47],"operation.":[48],"The":[49,93],"process":[51],"is":[52],"modeled":[53],"contextual":[56,63],"self-attentive":[57],"temporal":[58],"point":[59],"process,":[60],"which":[61],"incorporates":[62],"information":[64],"model":[66],"sequences":[67],"with":[68,76,105,125],"parallel":[69],"events":[70],"provides":[72],"more":[73,77],"accurate":[74],"predictions":[75],"seen":[78],"historical":[79],"data.":[80],"We":[81],"conducted":[82],"extensive":[83],"offline":[84],"online":[86,114],"experiments":[87],"20":[89],"sampled":[90],"centers.":[92],"results":[94],"show":[95],"that":[96],"proposed":[98],"methodology":[99,118],"achieves":[100],"best":[102],"performance":[103],"compared":[104],"baselines":[106],"improves":[108],"remarkable":[109],"94%":[110],"prediction":[111],"accuracy":[112],"experiments.":[115],"modeling":[117],"can":[119],"be":[120],"extended":[121],"other":[123],"domains":[124],"similar":[126],"workflow-like":[127],"processes.":[128]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385568119","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-12T10:48:06.464074","created_date":"2023-08-05"}