{"id":"https://openalex.org/W4327521191","doi":"https://doi.org/10.1145/3573428.3573541","title":"FeaturesRank: An unsupervised keyphrase extraction approach based on features representation for Chinese documents","display_name":"FeaturesRank: An unsupervised keyphrase extraction approach based on features representation for Chinese documents","publication_year":2022,"publication_date":"2022-10-21","ids":{"openalex":"https://openalex.org/W4327521191","doi":"https://doi.org/10.1145/3573428.3573541"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3573428.3573541","pdf_url":null,"source":{"id":"https://openalex.org/S4363608789","display_name":"Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013369066","display_name":"Yining Zhao","orcid":"https://orcid.org/0000-0002-8518-6152"},"institutions":[{"id":"https://openalex.org/I202126657","display_name":"Qufu Normal University","ror":"https://ror.org/03ceheh96","country_code":"CN","type":"funder","lineage":["https://openalex.org/I202126657"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yining Zhao","raw_affiliation_strings":["College of Computer Sciences, Qufu Normal University, China and \rShandong Institute of Big Data, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Sciences, Qufu Normal University, China and \rShandong Institute of Big Data, China","institution_ids":["https://openalex.org/I202126657"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079214290","display_name":"Xiaomin Zhu","orcid":"https://orcid.org/0000-0002-7983-8978"},"institutions":[{"id":"https://openalex.org/I4210096250","display_name":"Beijing Institute of Big Data Research","ror":"https://ror.org/00s1sz824","country_code":"CN","type":"facility","lineage":["https://openalex.org/I20231570","https://openalex.org/I37796252","https://openalex.org/I4210096250"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaomin Zhu","raw_affiliation_strings":["Shandong Institute of Big Data, China"],"affiliations":[{"raw_affiliation_string":"Shandong Institute of Big Data, China","institution_ids":["https://openalex.org/I4210096250"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031904848","display_name":"Maoli Wang","orcid":"https://orcid.org/0000-0001-5420-1463"},"institutions":[{"id":"https://openalex.org/I202126657","display_name":"Qufu Normal University","ror":"https://ror.org/03ceheh96","country_code":"CN","type":"funder","lineage":["https://openalex.org/I202126657"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Maoli Wang","raw_affiliation_strings":["College of Cybersecurity, Qufu Normal University, China"],"affiliations":[{"raw_affiliation_string":"College of Cybersecurity, Qufu Normal University, China","institution_ids":["https://openalex.org/I202126657"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041251993","display_name":"Xinming Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210096250","display_name":"Beijing Institute of Big Data Research","ror":"https://ror.org/00s1sz824","country_code":"CN","type":"facility","lineage":["https://openalex.org/I20231570","https://openalex.org/I37796252","https://openalex.org/I4210096250"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinming Wang","raw_affiliation_strings":["Shandong Institute of Big Data, China"],"affiliations":[{"raw_affiliation_string":"Shandong Institute of Big Data, China","institution_ids":["https://openalex.org/I4210096250"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026329786","display_name":"Min Zou","orcid":"https://orcid.org/0000-0001-5307-0131"},"institutions":[{"id":"https://openalex.org/I4210096250","display_name":"Beijing Institute of Big Data Research","ror":"https://ror.org/00s1sz824","country_code":"CN","type":"facility","lineage":["https://openalex.org/I20231570","https://openalex.org/I37796252","https://openalex.org/I4210096250"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Min Zou","raw_affiliation_strings":["Shandong Institute of Big Data, China"],"affiliations":[{"raw_affiliation_string":"Shandong Institute of Big Data, China","institution_ids":["https://openalex.org/I4210096250"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060008136","display_name":"Kaizhi Li","orcid":"https://orcid.org/0000-0003-1240-9287"},"institutions":[{"id":"https://openalex.org/I202126657","display_name":"Qufu Normal University","ror":"https://ror.org/03ceheh96","country_code":"CN","type":"funder","lineage":["https://openalex.org/I202126657"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kaizhi Li","raw_affiliation_strings":["College of Computer Sciences, Qufu Normal University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Sciences, Qufu Normal University, China","institution_ids":["https://openalex.org/I202126657"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":"637","last_page":"643"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/phrase","display_name":"Phrase","score":0.6377711},{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.5177497},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.4392864},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4209271}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83267945},{"id":"https://openalex.org/C2776224158","wikidata":"https://www.wikidata.org/wiki/Q187931","display_name":"Phrase","level":2,"score":0.6377711},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62237865},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.61851156},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.54148036},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.5177497},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.4392864},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.43895805},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4209271},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.41488588},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32359946},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.1169025},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3573428.3573541","pdf_url":null,"source":{"id":"https://openalex.org/S4363608789","display_name":"Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.8}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1603598191","https://openalex.org/W1880262756","https://openalex.org/W2064418625","https://openalex.org/W2083214110","https://openalex.org/W2129557600","https://openalex.org/W2167329753","https://openalex.org/W2169602691","https://openalex.org/W2250954789","https://openalex.org/W2997617958","https://openalex.org/W3017011725"],"related_works":["https://openalex.org/W2386861027","https://openalex.org/W2373794620","https://openalex.org/W2357294589","https://openalex.org/W2349302580","https://openalex.org/W2088166309","https://openalex.org/W2085384747","https://openalex.org/W2060629350","https://openalex.org/W2039546652","https://openalex.org/W2012262991","https://openalex.org/W1891216533"],"abstract_inverted_index":{"Keyphrase":[0],"extraction":[1,120],"technology":[2],"can":[3],"obtain":[4],"the":[5,56,74,79,100,104,116,124,127],"main":[6],"content":[7],"and":[8,23,35,51,67],"semantic":[9],"expression":[10],"of":[11,46,58,60,76,103,126],"academic":[12,40,109],"literature,":[13],"which":[14,122],"plays":[15],"an":[16],"essential":[17],"role":[18],"in":[19,78],"text":[20],"retrieval,":[21],"classification":[22],"clustering.":[24],"We":[25],"propose":[26],"a":[27,64,69,83,89],"new":[28,84],"method,":[29],"FeturesRank,":[30],"to":[31,54,62,87],"automatically":[32],"identify":[33],"meaningful":[34,65],"authoritative":[36],"keyphrases":[37],"from":[38],"Chinese":[39,108],"texts.":[41],"FeturesRank":[42],"integrates":[43],"three":[44],"features":[45],"keyphrase:":[47],"frequency,":[48],"contextual":[49],"relevance":[50],"grammatical":[52],"relation":[53],"measure":[55],"likelihood":[57],"sequence":[59],"words":[61,77],"be":[63],"phrase":[66],"introduces":[68],"scoring":[70],"mechanism":[71],"that":[72,99],"combines":[73],"influence":[75],"network":[80],"graph":[81],"with":[82,115],"\"phraseness\"":[85],"feature":[86],"calculate":[88],"normalized":[90],"score":[91],"for":[92],"every":[93],"candidate.":[94],"The":[95],"experimental":[96],"results":[97],"show":[98],"evaluation":[101],"indexes":[102],"proposed":[105],"method":[106],"on":[107],"datasets":[110],"are":[111],"significantly":[112],"improved":[113],"compared":[114],"four":[117],"popular":[118],"keyphrase":[119],"methods,":[121],"verifies":[123],"effectiveness":[125],"method.":[128]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4327521191","counts_by_year":[],"updated_date":"2025-02-25T08:31:17.241099","created_date":"2023-03-17"}