{"id":"https://openalex.org/W4312454596","doi":"https://doi.org/10.1145/3561801.3561805","title":"Stacking based prediction of COVID-19 Pandemic by integrating infectious disease dynamics model and traditional machine learning","display_name":"Stacking based prediction of COVID-19 Pandemic by integrating infectious disease dynamics model and traditional machine learning","publication_year":2022,"publication_date":"2022-08-12","ids":{"openalex":"https://openalex.org/W4312454596","doi":"https://doi.org/10.1145/3561801.3561805"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3561801.3561805","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058124481","display_name":"Xing-Rong Fan","orcid":"https://orcid.org/0000-0003-4561-3364"},"institutions":[{"id":"https://openalex.org/I145581781","display_name":"Chongqing Technology and Business University","ror":"https://ror.org/05hqf1284","country_code":"CN","type":"funder","lineage":["https://openalex.org/I145581781"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xing-Rong Fan","raw_affiliation_strings":["Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, China"],"affiliations":[{"raw_affiliation_string":"Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, China","institution_ids":["https://openalex.org/I145581781"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109593958","display_name":"Jie Zuo","orcid":null},"institutions":[{"id":"https://openalex.org/I125839683","display_name":"Beijing Institute of Technology","ror":"https://ror.org/01skt4w74","country_code":"CN","type":"funder","lineage":["https://openalex.org/I125839683","https://openalex.org/I890469752"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Zuo","raw_affiliation_strings":["Chongqing Innovation Center, Beijing Institute of Technology, China"],"affiliations":[{"raw_affiliation_string":"Chongqing Innovation Center, Beijing Institute of Technology, China","institution_ids":["https://openalex.org/I125839683"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100568509","display_name":"Wenting He","orcid":null},"institutions":[{"id":"https://openalex.org/I145581781","display_name":"Chongqing Technology and Business University","ror":"https://ror.org/05hqf1284","country_code":"CN","type":"funder","lineage":["https://openalex.org/I145581781"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wen-Ting He","raw_affiliation_strings":["School of Artificial Intelligence, Chongqing Technology and Business University, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence, Chongqing Technology and Business University, China","institution_ids":["https://openalex.org/I145581781"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100431814","display_name":"Wei Liu","orcid":"https://orcid.org/0000-0002-4555-6892"},"institutions":[{"id":"https://openalex.org/I145581781","display_name":"Chongqing Technology and Business University","ror":"https://ror.org/05hqf1284","country_code":"CN","type":"funder","lineage":["https://openalex.org/I145581781"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Liu","raw_affiliation_strings":["School of Artificial Intelligence, Chongqing Technology and Business University, China"],"affiliations":[{"raw_affiliation_string":"School of Artificial Intelligence, Chongqing Technology and Business University, China","institution_ids":["https://openalex.org/I145581781"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.581,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.803416,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9798,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.9724,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9102,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pandemic","display_name":"Pandemic","score":0.52443415},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42206958}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6138487},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5878736},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5800057},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.5710155},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.55456424},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.5305222},{"id":"https://openalex.org/C89623803","wikidata":"https://www.wikidata.org/wiki/Q12184","display_name":"Pandemic","level":5,"score":0.52443415},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.51079607},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.47627825},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4708585},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.42731643},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42206958},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2586741},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.23867944},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.19844267},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.17802653},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C99454951","wikidata":"https://www.wikidata.org/wiki/Q932068","display_name":"Environmental health","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3561801.3561805","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.87}],"grants":[{"funder":"https://openalex.org/F4320324805","funder_display_name":"Chongqing Municipal Education Commission","award_id":"KJQN201900833"}],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W2795027305","https://openalex.org/W2885082084","https://openalex.org/W3021303430","https://openalex.org/W3025394897","https://openalex.org/W3039543481","https://openalex.org/W3039828206","https://openalex.org/W3046555906","https://openalex.org/W3047348802","https://openalex.org/W3071964420","https://openalex.org/W3083193624","https://openalex.org/W3144611861","https://openalex.org/W807816048"],"related_works":["https://openalex.org/W4289356671","https://openalex.org/W3216594821","https://openalex.org/W3215700490","https://openalex.org/W2610868774","https://openalex.org/W2575795810","https://openalex.org/W2393341384","https://openalex.org/W2390006526","https://openalex.org/W2092994918","https://openalex.org/W1976866108","https://openalex.org/W1915333409"],"abstract_inverted_index":{"Accurate":[0],"prediction":[1,37,103],"of":[2,27,38,75,86,90,166,220,237],"2019":[3],"novel":[4],"coronavirus":[5],"diseases":[6],"(COVID-19)":[7],"has":[8],"been":[9],"playing":[10],"an":[11,33,128],"important":[12],"role":[13],"in":[14,71],"making":[15],"more":[16],"effective":[17],"prevention":[18],"and":[19,51,114,120,148,162,217,226,235],"control":[20],"policies":[21],"during":[22],"pandemic":[23,40],"crises.":[24],"The":[25,185],"aim":[26],"this":[28,76,230],"paper":[29],"was":[30,99,133,140],"to":[31,176,181],"develop":[32],"innovative":[34],"stacking":[35,93],"based":[36,94],"COVID-19":[39,102,199,242],"cumulative":[41,164],"confirmed":[42,168],"cases":[43,169],"(StackCPPred)":[44],"by":[45,142,203],"integrating":[46],"infectious":[47],"disease":[48],"dynamics":[49],"model":[50,98,118,132,146,193,240],"traditional":[52,105],"machine":[53,106],"learning.":[54],"Based":[55],"on":[56,159],"population":[57,68,160],"migration":[58],"characteristics,":[59],"five":[60,150],"feature":[61,151],"indicators":[62,152],"were":[63,79,179],"first":[64],"extracted":[65],"from":[66,81,173],"the":[67,72,82,87,109,115,124,144,149,154,171,190,195,204,210,218,233,238],"flow":[69],"data":[70,158],"early":[73],"stage":[74],"epidemic,":[77],"which":[78],"collected":[80],"National":[83],"Health":[84],"Commission":[85],"People's":[88],"Republic":[89],"China.":[91],"Then,":[92],"ensemble":[95],"learning":[96],"(SEL)":[97],"established":[100],"for":[101,198,241],"using":[104],"learning,":[107],"including":[108],"multiple":[110],"linear":[111],"regression":[112,117],"(MLR)":[113],"tree":[116],"(XGBoost":[119],"LightGBM).":[121],"By":[122],"introducing":[123],"variable":[125],"\"death":[126],"state\",":[127],"improved":[129],"Susceptible-Infected-Recovered":[130],"(ISIR)":[131],"established.":[134],"Finally,":[135],"a":[136],"hybrid":[137],"model,":[138],"StackCPPred":[139,192,239],"proposed":[141,191],"incorporating":[143],"ISIR":[145],"outputs":[147],"into":[153],"SEL":[155],"model.":[156,184],"Real":[157],"movements":[161],"daily":[163],"number":[165],"newly":[167],"across":[170],"country":[172],"January":[174],"23":[175],"February":[177],"6":[178],"used":[180],"validate":[182],"our":[183],"results":[186],"positively":[187],"proved":[188],"that":[189],"outperformed":[194],"existing":[196],"models":[197],"prediction,":[200],"as":[201],"quantified":[202],"root":[205,211],"mean":[206,212],"square":[207,213],"error":[208,215],"(RMSE),":[209],"logarithmic":[214],"(RMSLE)":[216],"coefficient":[219],"determination":[221],"(R2)":[222],"(\u223c1841":[223],"persons,":[224],"\u223c0.1":[225],">0.9,":[227],"respectively).":[228],"Furthermore,":[229],"study":[231],"confirms":[232],"validity":[234],"usefulness":[236],"prediction.":[243]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312454596","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-26T08:15:04.240288","created_date":"2023-01-04"}