{"id":"https://openalex.org/W4379740527","doi":"https://doi.org/10.1145/3555776.3577675","title":"Personalized Graph Attention Network for Multivariate Time-series Change Analysis: A Case Study on Long-term Maternal Monitoring","display_name":"Personalized Graph Attention Network for Multivariate Time-series Change Analysis: A Case Study on Long-term Maternal Monitoring","publication_year":2023,"publication_date":"2023-03-27","ids":{"openalex":"https://openalex.org/W4379740527","doi":"https://doi.org/10.1145/3555776.3577675"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3555776.3577675","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3555776.3577675","source":{"id":"https://openalex.org/S4363608665","display_name":"Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3555776.3577675","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101826614","display_name":"Yuning Wang","orcid":"https://orcid.org/0000-0001-7351-6866"},"institutions":[{"id":"https://openalex.org/I155660961","display_name":"University of Turku","ror":"https://ror.org/05vghhr25","country_code":"FI","type":"funder","lineage":["https://openalex.org/I155660961"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Yuning Wang","raw_affiliation_strings":["Department of Computing, University of Turku, Turku, Finland"],"affiliations":[{"raw_affiliation_string":"Department of Computing, University of Turku, Turku, Finland","institution_ids":["https://openalex.org/I155660961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084047638","display_name":"Iman Azimi","orcid":"https://orcid.org/0000-0001-5003-299X"},"institutions":[{"id":"https://openalex.org/I204250578","display_name":"University of California, Irvine","ror":"https://ror.org/04gyf1771","country_code":"US","type":"funder","lineage":["https://openalex.org/I204250578"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Iman Azimi","raw_affiliation_strings":["Department of Computing, University of California, Irvine, California, United States"],"affiliations":[{"raw_affiliation_string":"Department of Computing, University of California, Irvine, California, United States","institution_ids":["https://openalex.org/I204250578"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074499504","display_name":"Mohammad Feli","orcid":"https://orcid.org/0000-0002-4789-5433"},"institutions":[{"id":"https://openalex.org/I155660961","display_name":"University of Turku","ror":"https://ror.org/05vghhr25","country_code":"FI","type":"funder","lineage":["https://openalex.org/I155660961"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Mohammad Feli","raw_affiliation_strings":["Department of Computing, University of Turku, Turku, Finland"],"affiliations":[{"raw_affiliation_string":"Department of Computing, University of Turku, Turku, Finland","institution_ids":["https://openalex.org/I155660961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042140592","display_name":"Amir M. Rahmani","orcid":"https://orcid.org/0000-0003-0725-1155"},"institutions":[{"id":"https://openalex.org/I204250578","display_name":"University of California, Irvine","ror":"https://ror.org/04gyf1771","country_code":"US","type":"funder","lineage":["https://openalex.org/I204250578"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amir M. Rahmani","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, Department of Computer Science, and School of Nursing, University of California, Irvine, California, United States"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, Department of Computer Science, and School of Nursing, University of California, Irvine, California, United States","institution_ids":["https://openalex.org/I204250578"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019546150","display_name":"Pasi Liljeberg","orcid":"https://orcid.org/0000-0002-9392-3589"},"institutions":[{"id":"https://openalex.org/I155660961","display_name":"University of Turku","ror":"https://ror.org/05vghhr25","country_code":"FI","type":"funder","lineage":["https://openalex.org/I155660961"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Pasi Liljeberg","raw_affiliation_strings":["Department of Computing, University of Turku, Turku, Finland"],"affiliations":[{"raw_affiliation_string":"Department of Computing, University of Turku, Turku, Finland","institution_ids":["https://openalex.org/I155660961"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"593","last_page":"598"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13283","display_name":"Mental Health Research Topics","score":0.9535,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10745","display_name":"Heart Rate Variability and Autonomic Control","score":0.9095,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/abnormality","display_name":"Abnormality","score":0.6860719}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76113665},{"id":"https://openalex.org/C50965678","wikidata":"https://www.wikidata.org/wiki/Q2724302","display_name":"Abnormality","level":2,"score":0.6860719},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.51241857},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.43360293},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41902515},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4128064},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.4127807},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3616265},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.34235957},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.1710889},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3555776.3577675","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3555776.3577675","source":{"id":"https://openalex.org/S4363608665","display_name":"Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3555776.3577675","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3555776.3577675","source":{"id":"https://openalex.org/S4363608665","display_name":"Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Gender equality","score":0.47,"id":"https://metadata.un.org/sdg/5"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"FW-HTF CNS-2026614"},{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"SCC CNS-1831918"},{"funder":"https://openalex.org/F4320321108","funder_display_name":"Academy of Finland","award_id":"316810"},{"funder":"https://openalex.org/F4320321108","funder_display_name":"Academy of Finland","award_id":"316811"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1507814685","https://openalex.org/W1797820897","https://openalex.org/W2163951834","https://openalex.org/W2601918726","https://openalex.org/W2612502572","https://openalex.org/W2774486220","https://openalex.org/W2792140820","https://openalex.org/W2895640606","https://openalex.org/W2950361482","https://openalex.org/W2962146148","https://openalex.org/W2977582011","https://openalex.org/W2981199548","https://openalex.org/W3044867568","https://openalex.org/W3087925674","https://openalex.org/W3108350378","https://openalex.org/W3125445645","https://openalex.org/W3128634608","https://openalex.org/W3162911907","https://openalex.org/W3185859939"],"related_works":["https://openalex.org/W4247543202","https://openalex.org/W4243456421","https://openalex.org/W3093256375","https://openalex.org/W3028882978","https://openalex.org/W2896815346","https://openalex.org/W2417397217","https://openalex.org/W2355857550","https://openalex.org/W2072771697","https://openalex.org/W1841421040","https://openalex.org/W1487766990"],"abstract_inverted_index":{"Internet-of-Things-based":[0],"systems":[1,9,21],"have":[2,46],"recently":[3],"emerged,":[4],"enabling":[5],"long-term":[6,67,157,289],"health":[7,68,82,115,159,290],"monitoring":[8,83,238],"for":[10,28,194],"the":[11,34,39,44,59,91,131,137,143,149,198,201,204,209,214,222,228,231,237,251,256,272,276,280,285],"daily":[12],"activities":[13],"of":[14,139,164,203],"individuals.":[15],"The":[16,217,247,264],"data":[17,93,141,199,215,234],"collected":[18,235],"from":[19,136,200,230],"such":[20],"are":[22,73,167,225],"multivariate":[23,114,288],"and":[24,36,62,111,122,147,162,173,179,191,239,260],"longitudinal,":[25],"which":[26],"call":[27],"tailored":[29],"analysis":[30,183],"techniques":[31],"to":[32,49,75,89,108,126],"extract":[33],"trends":[35,51],"abnormalities":[37,112],"in":[38,43,52,66,113,236,254,287],"monitoring.":[40,144,160,205,291],"Different":[41],"methods":[42,253],"literature":[45],"been":[47],"proposed":[48,118,150,223,248,265,281],"identify":[50],"data.":[53,69,116,274],"However,":[54],"they":[55],"do":[56],"not":[57],"include":[58],"time":[60],"dependency":[61],"cannot":[63],"distinguish":[64],"changes":[65,110,257],"Moreover,":[70],"their":[71],"evaluations":[72],"limited":[74],"lab":[76],"settings":[77],"or":[78],"short-term":[79],"analysis.":[80],"Long-term":[81],"applications":[84],"require":[85],"a":[86,95,103,153,171,174],"modeling":[87],"technique":[88],"merge":[90],"multisensory":[92],"into":[94],"meaningful":[96],"indicator.":[97],"In":[98],"this":[99],"paper,":[100],"we":[101,207],"propose":[102],"personalized":[104,128,189],"neural":[105],"network":[106],"method":[107,119,151,224,249,282],"track":[109],"Our":[117,182],"leverages":[120],"convolutional":[121],"graph":[123],"attention":[124],"layers":[125],"produce":[127],"scores":[129,219,241,267],"indicating":[130],"abnormality":[132,218,240,286],"level":[133],"(i.e.,":[134],"deviations":[135],"baseline)":[138],"users'":[140],"throughout":[142],"We":[145,187],"implement":[146],"evaluate":[148],"via":[152],"case":[154],"study":[155],"on":[156],"maternal":[158],"Sleep":[161],"stress":[163,192],"pregnant":[165],"women":[166],"remotely":[168],"monitored":[169],"using":[170,197],"smartwatch":[172],"mobile":[175],"application":[176],"during":[177],"pregnancy":[178,262],"3-months":[180],"postpartum.":[181],"includes":[184],"46":[185],"women.":[186],"build":[188],"sleep":[190],"models":[193],"each":[195],"individual":[196],"beginning":[202],"Then,":[206],"compare":[208],"two":[210],"groups":[211],"by":[212,221,243],"measuring":[213],"variations.":[216],"produced":[220],"compared":[226],"with":[227,271],"findings":[229],"self-report":[232,273],"questionnaire":[233],"generated":[242],"an":[244],"autoencoder":[245],"method.":[246],"outperforms":[250],"baseline":[252],"exploring":[255],"between":[258],"high-risk":[259],"low-risk":[261],"groups.":[263],"method's":[266],"also":[268],"show":[269],"correlations":[270],"Consequently,":[275],"results":[277],"indicate":[278],"that":[279],"effectively":[283],"detects":[284]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379740527","counts_by_year":[],"updated_date":"2025-02-25T07:44:30.407888","created_date":"2023-06-08"}