{"id":"https://openalex.org/W4297796149","doi":"https://doi.org/10.1145/3548785.3548811","title":"Distinguishing Fake and Real News of Twitter Data with the help of Machine Learning Techniques","display_name":"Distinguishing Fake and Real News of Twitter Data with the help of Machine Learning Techniques","publication_year":2022,"publication_date":"2022-08-22","ids":{"openalex":"https://openalex.org/W4297796149","doi":"https://doi.org/10.1145/3548785.3548811"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3548785.3548811","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://laurentian.scholaris.ca/bitstreams/05cf8d78-ba79-489c-8213-05100c3106d4/download","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035585945","display_name":"Kalpdrum Passi","orcid":"https://orcid.org/0000-0002-7155-7901"},"institutions":[{"id":"https://openalex.org/I52353378","display_name":"Laurentian University","ror":"https://ror.org/03rcwtr18","country_code":"CA","type":"funder","lineage":["https://openalex.org/I52353378"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Kalpdrum Passi","raw_affiliation_strings":["School of Engineering and Computer Science, Laurentian University, Canada"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Computer Science, Laurentian University, Canada","institution_ids":["https://openalex.org/I52353378"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005807189","display_name":"Aanan Shah","orcid":null},"institutions":[{"id":"https://openalex.org/I52353378","display_name":"Laurentian University","ror":"https://ror.org/03rcwtr18","country_code":"CA","type":"funder","lineage":["https://openalex.org/I52353378"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Aanan Shah","raw_affiliation_strings":["School of Engineering and Computer Science, Laurentian University, Canada"],"affiliations":[{"raw_affiliation_string":"School of Engineering and Computer Science, Laurentian University, Canada","institution_ids":["https://openalex.org/I52353378"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.41,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.599524,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11147","display_name":"Misinformation and Its Impacts","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11147","display_name":"Misinformation and Its Impacts","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Spam and Phishing Detection","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word2vec","display_name":"Word2vec","score":0.6487541},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.49891782},{"id":"https://openalex.org/keywords/tf\u2013idf","display_name":"tf\u2013idf","score":0.46197167},{"id":"https://openalex.org/keywords/adjective","display_name":"Adjective","score":0.4396651},{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.43568954},{"id":"https://openalex.org/keywords/stop-words","display_name":"Stop words","score":0.43207324}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8020041},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.780464},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6808001},{"id":"https://openalex.org/C2776461190","wikidata":"https://www.wikidata.org/wiki/Q22673982","display_name":"Word2vec","level":3,"score":0.6487541},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.58693653},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.52662617},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.49891782},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.49544704},{"id":"https://openalex.org/C81758059","wikidata":"https://www.wikidata.org/wiki/Q796584","display_name":"tf\u2013idf","level":3,"score":0.46197167},{"id":"https://openalex.org/C2777683214","wikidata":"https://www.wikidata.org/wiki/Q34698","display_name":"Adjective","level":3,"score":0.4396651},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.43568954},{"id":"https://openalex.org/C188338183","wikidata":"https://www.wikidata.org/wiki/Q80735","display_name":"Stop words","level":3,"score":0.43207324},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.40862793},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40278825},{"id":"https://openalex.org/C121934690","wikidata":"https://www.wikidata.org/wiki/Q1084","display_name":"Noun","level":2,"score":0.30087113},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.1937396},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.13576996},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3548785.3548811","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://zone.biblio.laurentian.ca/handle/10219/3847","pdf_url":"https://laurentian.scholaris.ca/bitstreams/05cf8d78-ba79-489c-8213-05100c3106d4/download","source":{"id":"https://openalex.org/S4306402179","display_name":"Lu Zone Ul (Laurentian University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I52353378","host_organization_name":"Laurentian University","host_organization_lineage":["https://openalex.org/I52353378"],"host_organization_lineage_names":["Laurentian University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://zone.biblio.laurentian.ca/handle/10219/3847","pdf_url":"https://laurentian.scholaris.ca/bitstreams/05cf8d78-ba79-489c-8213-05100c3106d4/download","source":{"id":"https://openalex.org/S4306402179","display_name":"Lu Zone Ul (Laurentian University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I52353378","host_organization_name":"Laurentian University","host_organization_lineage":["https://openalex.org/I52353378"],"host_organization_lineage_names":["Laurentian University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.67,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1410460","https://openalex.org/W1970361289","https://openalex.org/W2057493632","https://openalex.org/W2101746535","https://openalex.org/W2143017621","https://openalex.org/W2342603028","https://openalex.org/W2801966202","https://openalex.org/W2962965465","https://openalex.org/W3121309663","https://openalex.org/W3132947498","https://openalex.org/W3133030026","https://openalex.org/W4225979357","https://openalex.org/W4239510810","https://openalex.org/W4297789775"],"related_works":["https://openalex.org/W4388996947","https://openalex.org/W4226211987","https://openalex.org/W3152932816","https://openalex.org/W3133567596","https://openalex.org/W2985392712","https://openalex.org/W2946409105","https://openalex.org/W2913738019","https://openalex.org/W2903145235","https://openalex.org/W2580878117","https://openalex.org/W2574070988"],"abstract_inverted_index":{"News":[0],"articles":[1],"have":[2],"an":[3,73,168,175,201,215],"influence":[4],"on":[5,159],"people's":[6],"belief":[7],"and":[8,56,97,144,172,208],"views":[9],"about":[10],"various":[11],"circumstances.":[12],"In":[13],"this":[14],"regard,":[15],"some":[16],"news":[17,27],"publishers":[18],"with":[19,115],"political":[20],"or":[21,31,75],"ideological":[22],"bias":[23],"try":[24],"to":[25,39,64],"spread":[26],"which":[28,179,213],"are":[29],"distorted":[30],"totally":[32],"wrong.":[33],"Natural":[34],"language":[35],"processing":[36],"was":[37,62,82,101],"used":[38,125],"preprocess":[40],"the":[41,79,104,116,128,163,184,196,218],"text.":[42],"Some":[43],"general":[44],"features":[45],"like,":[46],"number":[47],"of":[48,170,177,187,203,221],"words,":[49,53],"sentences,":[50],"stopwords,":[51],"non-alphabetic":[52],"verbs,":[54],"nouns,":[55],"adjectives":[57],"were":[58,112,124,156],"identified.":[59],"Word":[60],"positioning":[61],"labeled":[63],"distinguish":[65],"a":[66,69,71,76,150],"word":[67],"as":[68,149],"noun,":[70],"pronoun,":[72],"adjective":[74],"verb":[77],"in":[78],"sentences.":[80],"Preprocessing":[81],"followed":[83],"by":[84,107],"feature":[85,109],"extraction":[86,110],"methods":[87],"namely,":[88,130],"count":[89],"vectorizer,":[90],"Term":[91],"Frequency-Inverse":[92],"Document":[93],"Frequency":[94],"(TF-IDF)":[95],"vectorizer":[96],"word2vec":[98],"embedding.":[99],"It":[100],"observed":[102],"that":[103],"results":[105,186,220],"obtained":[106],"TF-IDF":[108],"method":[111],"superior":[113],"compared":[114],"other":[117],"two":[118,160],"methods.":[119],"Various":[120],"machine":[121],"learning":[122,152],"models":[123,155],"for":[126],"training":[127],"model":[129],"Naive":[131],"Bayes,":[132],"Logistic":[133,209],"Regression,":[134],"Random":[135],"Forest,":[136],"K-nearest":[137],"neighbors":[138],"(KNN),":[139],"Support":[140],"Vector":[141],"Machine":[142],"(SVM)":[143],"Recurrent":[145],"Neural":[146],"Network":[147],"(RNN)":[148],"deep":[151],"model.":[153],"The":[154],"successfully":[157],"tested":[158],"datasets.":[161],"On":[162,195],"first":[164],"dataset,":[165,198],"SVM":[166,199],"achieved":[167,174,200,206,211],"accuracy":[169,176,202],"98.5%":[171],"RNN":[173,205],"98.03%":[178],"is":[180,214],"much":[181],"improvement":[182,216],"over":[183,217],"best":[185,219],"Agarwalla":[188],"et":[189,223],"al.,":[190],"2019":[191],"(83.16":[192],"%":[193],"accuracy).":[194,227],"second":[197],"97.76%,":[204],"97.1%":[207],"Regression":[210],"97.50%":[212],"Vijayraghavan":[222],"al.":[224],"2020":[225],"(94.88%":[226]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4297796149","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-23T01:19:37.442712","created_date":"2022-10-01"}