{"id":"https://openalex.org/W4367046995","doi":"https://doi.org/10.1145/3543507.3583545","title":"Optimizing Feature Set for Click-Through Rate Prediction","display_name":"Optimizing Feature Set for Click-Through Rate Prediction","publication_year":2023,"publication_date":"2023-04-26","ids":{"openalex":"https://openalex.org/W4367046995","doi":"https://doi.org/10.1145/3543507.3583545"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583545","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2301.10909","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079054140","display_name":"Fuyuan Lyu","orcid":"https://orcid.org/0000-0001-9345-1828"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Fuyuan Lyu","raw_affiliation_strings":["McGill University, Canada"],"affiliations":[{"raw_affiliation_string":"McGill University, Canada","institution_ids":["https://openalex.org/I5023651"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071989106","display_name":"Xing Tang","orcid":"https://orcid.org/0000-0003-4360-0754"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xing Tang","raw_affiliation_strings":["FiT, Tencent, China"],"affiliations":[{"raw_affiliation_string":"FiT, Tencent, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003106644","display_name":"Dugang Liu","orcid":"https://orcid.org/0000-0003-3612-709X"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dugang Liu","raw_affiliation_strings":["Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), China"],"affiliations":[{"raw_affiliation_string":"Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101957211","display_name":"Liang Chen","orcid":"https://orcid.org/0000-0002-3149-0239"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liang Chen","raw_affiliation_strings":["FiT, Tencent, China"],"affiliations":[{"raw_affiliation_string":"FiT, Tencent, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083350101","display_name":"Xiuqiang He","orcid":"https://orcid.org/0000-0002-4115-8205"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiuqiang He","raw_affiliation_strings":["FiT, Tencent, China"],"affiliations":[{"raw_affiliation_string":"FiT, Tencent, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100372152","display_name":"Xue Liu","orcid":"https://orcid.org/0000-0001-5252-3442"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"funder","lineage":["https://openalex.org/I5023651"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Xue Liu","raw_affiliation_strings":["McGill University, Canada"],"affiliations":[{"raw_affiliation_string":"McGill University, Canada","institution_ids":["https://openalex.org/I5023651"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.952,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.999453,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"3386","last_page":"3395"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13731","display_name":"Advanced Computing and Algorithms","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/3322","display_name":"Urban Studies"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.76997566},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.56046975},{"id":"https://openalex.org/keywords/feature-model","display_name":"Feature model","score":0.48771676}],"concepts":[{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.76997566},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.73791504},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6589993},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5755246},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.56046975},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54649115},{"id":"https://openalex.org/C101814296","wikidata":"https://www.wikidata.org/wiki/Q5439685","display_name":"Feature model","level":3,"score":0.48771676},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4783375},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.45990276},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33131534},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16194516},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.08255437},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583545","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.10909","pdf_url":"https://arxiv.org/pdf/2301.10909","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.10909","pdf_url":"https://arxiv.org/pdf/2301.10909","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1985759455","https://openalex.org/W2028781966","https://openalex.org/W2090883204","https://openalex.org/W2135046866","https://openalex.org/W2158515176","https://openalex.org/W2163922914","https://openalex.org/W2548570154","https://openalex.org/W2604662567","https://openalex.org/W2747329762","https://openalex.org/W2787894218","https://openalex.org/W2963832024","https://openalex.org/W2963924287","https://openalex.org/W2967733054","https://openalex.org/W3081190557","https://openalex.org/W3093965394","https://openalex.org/W3109632933","https://openalex.org/W3152501898","https://openalex.org/W3172054950","https://openalex.org/W3190445275","https://openalex.org/W3192708477","https://openalex.org/W3210057995","https://openalex.org/W4224227049","https://openalex.org/W4290874950","https://openalex.org/W4294977709","https://openalex.org/W4295884304","https://openalex.org/W4320167327"],"related_works":["https://openalex.org/W4386564352","https://openalex.org/W4293280545","https://openalex.org/W4249408043","https://openalex.org/W2967648533","https://openalex.org/W2783243052","https://openalex.org/W2755621609","https://openalex.org/W2286471624","https://openalex.org/W2114784261","https://openalex.org/W2089600798","https://openalex.org/W2080356790"],"abstract_inverted_index":{"Click-through":[0],"prediction":[1,220],"(CTR)":[2],"models":[3],"transform":[4],"features":[5,37,115,139,215],"into":[6,151],"latent":[7],"vectors":[8],"and":[9,38,97,140,241,247],"enumerate":[10],"possible":[11],"feature":[12,21,28,48,54,60,65,74,90,105,118,149,168,185,190,212,234],"interactions":[13],"to":[14,62,72,80,93,130,181,204],"improve":[15,217],"performance":[16,240],"based":[17,56],"on":[18,46,57,226],"the":[19,33,58,64,73,117,136,145,152,162,189,194,211,218,238,245],"input":[20],"set.":[22,66,119,191],"Therefore,":[23],"when":[24],"selecting":[25],"an":[26],"optimal":[27],"set,":[29],"we":[30,123,143,176,198,223],"should":[31,186],"consider":[32],"influence":[34],"of":[35,138,147,154,193],"both":[36,244],"their":[39,141],"interaction.":[40],"However,":[41],"most":[42],"previous":[43],"works":[44],"focus":[45],"either":[47],"field":[49],"selection":[50,137,146,153],"or":[51],"only":[52],"select":[53],"interaction":[55,106,150,169],"fixed":[59],"set":[61,177,213],"produce":[63],"The":[67,101],"former":[68],"restricts":[69],"search":[70,174,196],"space":[71],"field,":[75],"which":[76,236],"is":[77],"too":[78],"coarse":[79],"determine":[81,182],"subtle":[82],"features.":[83,157],"They":[84],"also":[85],"do":[86],"not":[87],"filter":[88],"useless":[89],"interactions,":[91],"leading":[92],"higher":[94],"computation":[95],"costs":[96],"degraded":[98],"model":[99,163,239],"performance.":[100],"latter":[102],"identifies":[103],"useful":[104],"from":[107],"all":[108],"available":[109],"features,":[110],"resulting":[111],"in":[112,116],"many":[113],"redundant":[114],"In":[120],"this":[121],"paper,":[122],"propose":[124],"a":[125,159,178,200],"novel":[126],"method":[127],"named":[128],"OptFS":[129,209,225,231],"address":[131],"these":[132],"problems.":[133],"To":[134],"unify":[135],"interaction,":[142],"decompose":[144],"each":[148,184],"two":[155],"correlated":[156],"Such":[158],"decomposition":[160],"makes":[161],"end-to-end":[164],"trainable":[165],"given":[166],"various":[167],"operations.":[170],"By":[171],"adopting":[172],"feature-level":[173],"space,":[175,197],"learnable":[179],"gate":[180],"whether":[183],"be":[187],"within":[188],"Because":[192],"large-scale":[195],"develop":[199],"learning-by-continuation":[201],"training":[202],"scheme":[203],"learn":[205],"such":[206],"gates.":[207],"Hence,":[208],"generates":[210],"containing":[214],"that":[216],"final":[219],"results.":[221],"Experimentally,":[222],"evaluate":[224],"three":[227],"public":[228],"datasets,":[229],"demonstrating":[230],"can":[232],"optimize":[233],"sets":[235],"enhance":[237],"further":[242],"reduce":[243],"storage":[246],"computational":[248],"cost.":[249]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367046995","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":5}],"updated_date":"2025-04-13T10:02:18.490711","created_date":"2023-04-27"}