{"id":"https://openalex.org/W4367046977","doi":"https://doi.org/10.1145/3543507.3583397","title":"Hierarchical Self-Attention Embedding for Temporal Knowledge Graph Completion","display_name":"Hierarchical Self-Attention Embedding for Temporal Knowledge Graph Completion","publication_year":2023,"publication_date":"2023-04-26","ids":{"openalex":"https://openalex.org/W4367046977","doi":"https://doi.org/10.1145/3543507.3583397"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583397","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069447196","display_name":"Xin Ren","orcid":"https://orcid.org/0000-0002-1197-8106"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xin Ren","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065518531","display_name":"Luyi Bai","orcid":"https://orcid.org/0000-0001-9546-3208"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Luyi Bai","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031842346","display_name":"Qianwen Xiao","orcid":"https://orcid.org/0000-0002-9226-9677"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qianwen Xiao","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056691786","display_name":"Xiangxi Meng","orcid":"https://orcid.org/0000-0001-5485-7980"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangxi Meng","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.649,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.999754,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"2539","last_page":"2547"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C113954288","wikidata":"https://www.wikidata.org/wiki/Q186885","display_name":"Timestamp","level":2,"score":0.8512058},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76978356},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.66087526},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.56299084},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5365631},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.46448475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46104783},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3427301},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583397","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61402087"},{"funder":"https://openalex.org/F4320322163","funder_display_name":"Natural Science Foundation of Hebei Province","award_id":"F2022501015"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W2022166150","https://openalex.org/W2036287059","https://openalex.org/W2560674852","https://openalex.org/W2604314403","https://openalex.org/W2759136286","https://openalex.org/W2798864014","https://openalex.org/W2889782235","https://openalex.org/W2911778742","https://openalex.org/W2996899616","https://openalex.org/W2998528434","https://openalex.org/W3003265726","https://openalex.org/W3100254008","https://openalex.org/W3114354807","https://openalex.org/W3163457243","https://openalex.org/W3182741322","https://openalex.org/W3199561489","https://openalex.org/W3212669276","https://openalex.org/W4282974123","https://openalex.org/W4299828299"],"related_works":["https://openalex.org/W4379524643","https://openalex.org/W2932872266","https://openalex.org/W2469862403","https://openalex.org/W2166378262","https://openalex.org/W2060561905","https://openalex.org/W2035891203","https://openalex.org/W2032260263","https://openalex.org/W2011027677","https://openalex.org/W1986883493","https://openalex.org/W1417711376"],"abstract_inverted_index":{"Temporal":[0,54],"Knowledge":[1,55],"Graph":[2,56],"(TKG)":[3],"is":[4,32],"composed":[5],"of":[6,9,23,110,119,125,138,144,172,211,239],"a":[7,38,51,131,153],"series":[8,142,209],"facts":[10,45,49,70],"related":[11],"to":[12,42,82,95,194,202],"timestamps":[13,76,129],"in":[14,50],"the":[15,21,29,85,100,107,116,120,139,145,173,178,191,195,204,212,226,235,269],"real":[16],"world":[17],"and":[18,75,114,134,165,185,188,198,221,242,264],"has":[19,36],"become":[20,37],"basis":[22],"many":[24],"artificial":[25],"intelligence":[26],"applications.":[27],"However,":[28],"existing":[30,48],"TKG":[31,86,179,260],"usually":[33,127],"incomplete.":[34],"It":[35],"hot":[39],"research":[40],"task":[41,272],"infer":[43],"missing":[44,69],"based":[46],"on":[47,258,268],"TKG;":[52],"namely,":[53],"Completion":[57],"(TKGC).":[58],"The":[59],"current":[60],"mainstream":[61],"TKGC":[62,270],"models":[63,66,92,250],"are":[64,90],"embedded":[65,236],"that":[67,93,274],"predict":[68],"by":[71,162,217],"representing":[72],"entities,":[73,240],"relations":[74,241],"as":[77,130],"low-dimensional":[78],"vectors.":[79],"In":[80],"order":[81],"deal":[83],"with":[84,248],"structure":[87,108,117,170,205],"information,":[88],"there":[89],"some":[91],"try":[94],"introduce":[96],"attention":[97],"mechanism":[98,164,193],"into":[99,180,225],"embedding":[101,167,223],"process.":[102],"But":[103],"they":[104],"only":[105],"consider":[106],"information":[109,118,143,171,210],"entities":[111],"or":[112],"relations,":[113],"ignore":[115],"whole":[121,174],"TKG.":[122],"Moreover,":[123],"most":[124],"them":[126,216],"treat":[128],"general":[132],"feature":[133],"cannot":[135],"take":[136],"advantage":[137],"potential":[140],"time":[141,208],"timestamp.":[146],"To":[147],"solve":[148],"these":[149],"problems,":[150],"wo":[151],"propose":[152],"new":[154],"Hierarchical":[155],"Self-Attention":[156],"Embedding":[157],"(HSAE)":[158],"model":[159,257,276],"which":[160,244],"inspired":[161],"self-attention":[163,192,229],"diachronic":[166,222],"technique.":[168],"For":[169,207],"TKG,":[175],"we":[176,214,232],"divide":[177],"two":[181,228],"layers:":[182],"entity":[183,196],"layer":[184,197,200],"relation":[186,199],"layer,":[187],"then":[189],"apply":[190],"respectively":[201],"capture":[203,215],"information.":[206],"timestamp,":[213],"combining":[218],"positional":[219],"encoding":[220],"technique":[224],"above":[227],"layers.":[230],"Finally,":[231],"can":[233,245],"get":[234],"representation":[237],"vectors":[238],"timestamps,":[243],"be":[246],"combined":[247],"other":[249],"for":[251],"better":[252],"results.":[253,279],"We":[254],"evaluate":[255],"our":[256,275],"three":[259],"datasets:":[261],"ICEWS14,":[262],"ICEWS05-15":[263],"GDELT.":[265],"Experimental":[266],"results":[267],"(interpolation)":[271],"demonstrate":[273],"achieves":[277],"state-of-the-art":[278]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367046977","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-18T02:26:26.178441","created_date":"2023-04-27"}