{"id":"https://openalex.org/W4367047304","doi":"https://doi.org/10.1145/3543507.3583365","title":"Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost","display_name":"Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost","publication_year":2023,"publication_date":"2023-04-26","ids":{"openalex":"https://openalex.org/W4367047304","doi":"https://doi.org/10.1145/3543507.3583365"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583365","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040636331","display_name":"Zhongjie Duan","orcid":"https://orcid.org/0000-0002-5973-8240"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhongjie Duan","raw_affiliation_strings":["East China Normal University, China"],"affiliations":[{"raw_affiliation_string":"East China Normal University, China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100373451","display_name":"Chengyu Wang","orcid":"https://orcid.org/0000-0003-1010-9678"},"institutions":[{"id":"https://openalex.org/I45928872","display_name":"Alibaba Group (China)","ror":"https://ror.org/00k642b80","country_code":"CN","type":"company","lineage":["https://openalex.org/I45928872"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengyu Wang","raw_affiliation_strings":["Alibaba Group, China"],"affiliations":[{"raw_affiliation_string":"Alibaba Group, China","institution_ids":["https://openalex.org/I45928872"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114734448","display_name":"Cen Chen","orcid":"https://orcid.org/0000-0003-0325-1705"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cen Chen","raw_affiliation_strings":["East China Normal University, China"],"affiliations":[{"raw_affiliation_string":"East China Normal University, China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016155107","display_name":"Wenmeng Zhou","orcid":"https://orcid.org/0000-0001-9967-5515"},"institutions":[{"id":"https://openalex.org/I45928872","display_name":"Alibaba Group (China)","ror":"https://ror.org/00k642b80","country_code":"CN","type":"company","lineage":["https://openalex.org/I45928872"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenmeng Zhou","raw_affiliation_strings":["Alibaba Group, China"],"affiliations":[{"raw_affiliation_string":"Alibaba Group, China","institution_ids":["https://openalex.org/I45928872"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054621636","display_name":"Jun Huang","orcid":"https://orcid.org/0000-0002-7706-7081"},"institutions":[{"id":"https://openalex.org/I45928872","display_name":"Alibaba Group (China)","ror":"https://ror.org/00k642b80","country_code":"CN","type":"company","lineage":["https://openalex.org/I45928872"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Huang","raw_affiliation_strings":["Alibaba Group, China"],"affiliations":[{"raw_affiliation_string":"Alibaba Group, China","institution_ids":["https://openalex.org/I45928872"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5089931216","display_name":"Weining Qian","orcid":"https://orcid.org/0000-0002-4132-8630"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weining Qian","raw_affiliation_strings":["East China Normal University, China"],"affiliations":[{"raw_affiliation_string":"East China Normal University, China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.226,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.479469,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"3257","last_page":"3267"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.45041603},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.4321226}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.87362957},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5371177},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.50785667},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48501012},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.46871012},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.45041603},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.4321226},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32248598},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22069982},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583365","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62202170"}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1573040851","https://openalex.org/W1888906176","https://openalex.org/W1893116441","https://openalex.org/W1963951527","https://openalex.org/W2061872629","https://openalex.org/W2099736636","https://openalex.org/W2103002522","https://openalex.org/W2124509324","https://openalex.org/W2149342630","https://openalex.org/W2153441719","https://openalex.org/W2371831755","https://openalex.org/W2425121537","https://openalex.org/W2490414731","https://openalex.org/W2549139847","https://openalex.org/W2752782242","https://openalex.org/W2798991696","https://openalex.org/W2885775891","https://openalex.org/W2963017553","https://openalex.org/W2963524571","https://openalex.org/W2963916161","https://openalex.org/W2998702515","https://openalex.org/W3035078899","https://openalex.org/W3035356601","https://openalex.org/W3035524453","https://openalex.org/W3043840704","https://openalex.org/W3145807616","https://openalex.org/W3168640669","https://openalex.org/W3175939205","https://openalex.org/W3176398504","https://openalex.org/W3204588463","https://openalex.org/W3204670646","https://openalex.org/W3206019042","https://openalex.org/W4213060883","https://openalex.org/W4225390749","https://openalex.org/W4312999114","https://openalex.org/W4313186260","https://openalex.org/W587082522"],"related_works":["https://openalex.org/W4386083130","https://openalex.org/W4367623556","https://openalex.org/W3125517176","https://openalex.org/W3111737715","https://openalex.org/W2117442182","https://openalex.org/W2081707527","https://openalex.org/W2069571255","https://openalex.org/W2055243143","https://openalex.org/W2023355163","https://openalex.org/W1975907365"],"abstract_inverted_index":{"With":[0],"the":[1,10,43,52,119,130,142,146,158,173,177,182,202,228,235],"explosive":[2],"growth":[3],"of":[4,35,58,67,145,176,204,218,231,247],"video":[5,21,154],"and":[6,48,87,95,116,122,156,190],"text":[7],"data":[8],"on":[9,28,82,210],"web,":[11],"text-video":[12,24,78,163,213],"retrieval":[13,25,79,111,126,183],"has":[14],"become":[15],"a":[16,33,56,64,76,124,186,244],"vital":[17],"task":[18],"for":[19,104],"online":[20],"platforms.":[22],"Recently,":[23],"methods":[26,39],"based":[27,81],"pre-trained":[29,143],"models":[30],"have":[31],"attracted":[32],"lot":[34],"attention.":[36],"However,":[37],"existing":[38],"cannot":[40],"effectively":[41],"capture":[42],"fine-grained":[44,135,159],"information":[45,160],"in":[46,118],"videos,":[47],"typically":[49],"suffer":[50],"from":[51,234],"hubness":[53,178],"problem":[54,184,189],"where":[55],"collection":[57],"similar":[59],"videos":[60,117],"are":[61],"retrieved":[62],"by":[63],"large":[65,245],"number":[66,246],"different":[68,105],"queries.":[69],"In":[70,108,134,167],"this":[71],"paper,":[72],"we":[73,113,180,207,226],"propose":[74],"Match4Match,":[75],"new":[77],"method":[80,139,221],"CLIP":[83,147],"(Contrastive":[84],"Language-Image":[85],"Pretraining)":[86],"graph":[88],"optimization":[89,188],"theories.":[90],"To":[91,200],"balance":[92],"calculation":[93],"efficiency":[94,230],"model":[96,148,181],"accuracy,":[97],"Match4Match":[98,240],"seamlessly":[99],"supports":[100],"three":[101,236],"inference":[102,238],"modes":[103],"application":[106],"scenarios.":[107],"fast":[109],"vector":[110,125],"mode,":[112,137,170],"embed":[114],"texts":[115],"same":[120],"space":[121],"employ":[123],"engine":[127],"to":[128,149,161,171,243],"obtain":[129],"top":[131],"K":[132],"videos.":[133],"alignment":[136],"our":[138,205,219],"fully":[140],"utilizes":[141],"knowledge":[144],"align":[150],"words":[151],"with":[152,196,250,257],"corresponding":[153],"frames,":[155],"uses":[157],"compute":[162],"similarity":[164],"more":[165],"accurately.":[166],"flow-style":[168],"matching":[169],"alleviate":[172],"detrimental":[174],"impact":[175],"problem,":[179],"as":[185],"combinatorial":[187],"solve":[191],"it":[192],"using":[193],"maximum":[194],"flow":[195],"minimum":[197],"cost":[198],"algorithm.":[199],"demonstrate":[201],"effectiveness":[203],"method,":[206],"conduct":[208],"experiments":[209],"five":[211],"public":[212],"datasets.":[214],"The":[215],"overall":[216],"performance":[217],"proposed":[220],"outperforms":[222],"state-of-the-art":[223],"methods.":[224],"Additionally,":[225],"evaluate":[227],"computational":[229],"Match4Match.":[232],"Benefiting":[233],"flexible":[237],"modes,":[239],"can":[241],"respond":[242],"query":[248],"requests":[249],"low":[251],"latency":[252],"or":[253],"achieve":[254],"high":[255],"recall":[256],"acceptable":[258],"time":[259],"consumption.":[260]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367047304","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-06T11:31:47.092136","created_date":"2023-04-27"}