{"id":"https://openalex.org/W4367046748","doi":"https://doi.org/10.1145/3543507.3583304","title":"Automated Spatio-Temporal Graph Contrastive Learning","display_name":"Automated Spatio-Temporal Graph Contrastive Learning","publication_year":2023,"publication_date":"2023-04-26","ids":{"openalex":"https://openalex.org/W4367046748","doi":"https://doi.org/10.1145/3543507.3583304"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583304","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2305.03920","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081754585","display_name":"Qianru Zhang","orcid":"https://orcid.org/0000-0002-5843-6187"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Qianru Zhang","raw_affiliation_strings":["The University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091518548","display_name":"Chao Huang","orcid":null},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Chao Huang","raw_affiliation_strings":["The University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019844880","display_name":"Lianghao Xia","orcid":"https://orcid.org/0000-0003-0725-2211"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Lianghao Xia","raw_affiliation_strings":["The University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100401111","display_name":"Zheng Wang","orcid":"https://orcid.org/0000-0002-7064-6267"},"institutions":[],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Zheng Wang","raw_affiliation_strings":["Huawei Singapore Research Center, Singapore"],"affiliations":[{"raw_affiliation_string":"Huawei Singapore Research Center, Singapore","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023084303","display_name":"Zhonghang Li","orcid":"https://orcid.org/0000-0002-3977-1334"},"institutions":[{"id":"https://openalex.org/I90610280","display_name":"South China University of Technology","ror":"https://ror.org/0530pts50","country_code":"CN","type":"funder","lineage":["https://openalex.org/I90610280"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhonghang Li","raw_affiliation_strings":["South China University of Technology, China"],"affiliations":[{"raw_affiliation_string":"South China University of Technology, China","institution_ids":["https://openalex.org/I90610280"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025130883","display_name":"Siu Ming Yiu","orcid":"https://orcid.org/0000-0002-3975-8500"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Siuming Yiu","raw_affiliation_strings":["The University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"The University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.932,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":22,"citation_normalized_percentile":{"value":0.999835,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"295","last_page":"305"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75124025},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.50498754},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50273824},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.40326804},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.20417699}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3543507.3583304","pdf_url":null,"source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.03920","pdf_url":"http://arxiv.org/pdf/2305.03920","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.03920","pdf_url":"https://arxiv.org/pdf/2305.03920","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.03920","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.03920","pdf_url":"http://arxiv.org/pdf/2305.03920","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4367046748"],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1990950330","https://openalex.org/W2514525802","https://openalex.org/W2768009948","https://openalex.org/W2788114581","https://openalex.org/W2788822798","https://openalex.org/W2807954821","https://openalex.org/W2895806569","https://openalex.org/W2903883820","https://openalex.org/W2952611035","https://openalex.org/W2962756421","https://openalex.org/W2964015378","https://openalex.org/W2964316623","https://openalex.org/W2964958499","https://openalex.org/W3005680577","https://openalex.org/W3012562343","https://openalex.org/W3026092005","https://openalex.org/W3034277777","https://openalex.org/W3095602948","https://openalex.org/W3095746859","https://openalex.org/W3101687079","https://openalex.org/W3103720336","https://openalex.org/W3106454468","https://openalex.org/W3128267727","https://openalex.org/W3154325244","https://openalex.org/W3154503084","https://openalex.org/W3164797320","https://openalex.org/W3177214747","https://openalex.org/W3189269126","https://openalex.org/W3204453541","https://openalex.org/W3211961572","https://openalex.org/W4213045933","https://openalex.org/W4221023051","https://openalex.org/W4224324140","https://openalex.org/W4224911291","https://openalex.org/W4224983022","https://openalex.org/W4226499556","https://openalex.org/W4288275971","https://openalex.org/W4294558607","https://openalex.org/W4297571622","https://openalex.org/W4297733535","https://openalex.org/W4297808394","https://openalex.org/W4301055875","https://openalex.org/W4307123550","https://openalex.org/W4322614756","https://openalex.org/W569478347"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W3204019825","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Among":[0],"various":[1],"region":[2,6,86,115,137],"embedding":[3],"methods,":[4],"graph-based":[5],"relation":[7],"learning":[8,109],"models":[9],"stand":[10],"out,":[11],"owing":[12],"to":[13,53,80,91,133,141,180],"their":[14,28],"strong":[15],"structure":[16],"representation":[17],"ability":[18],"for":[19,192],"encoding":[20],"spatial":[21],"correlations":[22],"with":[23,139,171,185],"graph":[24,107,116,130,184],"neural":[25,131],"networks.":[26],"Despite":[27],"effectiveness,":[29],"several":[30,199],"key":[31],"challenges":[32,101],"have":[33],"not":[34],"been":[35],"well":[36,188],"addressed":[37],"in":[38,48],"existing":[39],"methods:":[40],"i)":[41],"Data":[42],"noise":[43,160],"and":[44,71,147,161],"missing":[45],"are":[46,78],"ubiquitous":[47],"many":[49],"spatio-temporal":[50,60,168,182,195],"scenarios":[51],"due":[52],"a":[54,128,172,212],"variety":[55,213],"of":[56,83,154,214],"factors.":[57],"ii)":[58],"Input":[59],"data":[61,120,159],"(e.g.,":[62],"mobility":[63,144],"traces)":[64],"usually":[65],"exhibits":[66],"distribution":[67,162],"heterogeneity":[68],"across":[69],"space":[70],"time.":[72],"In":[73,94],"such":[74],"cases,":[75],"current":[76],"methods":[77],"vulnerable":[79],"the":[81,84,99,104,113,135,152,181,203],"quality":[82],"generated":[85,117],"graphs,":[87],"which":[88],"may":[89],"lead":[90],"suboptimal":[92],"performance.":[93],"this":[95],"paper,":[96],"we":[97,164],"tackle":[98],"above":[100],"by":[102,208],"exploring":[103],"Automated":[105],"Spatio-Temporal":[106],"contrastive":[108,174],"paradigm":[110],"(AutoST)":[111],"over":[112,211],"heterogeneous":[114,129,183],"from":[118],"multi-view":[119,136,186],"sources.":[121],"Our":[122],"\\model\\":[123,210],"framework":[124],"is":[125,218],"built":[126],"upon":[127],"architecture":[132],"capture":[134],"dependencies":[138],"respect":[140],"POI":[142],"semantics,":[143],"flow":[145],"patterns":[146],"geographical":[148],"positions.":[149],"To":[150],"improve":[151],"robustness":[153],"our":[155,209],"GNN":[156],"encoder":[157],"against":[158],"issues,":[163],"design":[165],"an":[166],"automated":[167],"augmentation":[169],"scheme":[170],"parameterized":[173],"view":[175],"generator.":[176],"AutoST":[177],"can":[178],"adapt":[179],"semantics":[187],"preserved.":[189],"Extensive":[190],"experiments":[191],"three":[193],"downstream":[194],"mining":[196],"tasks":[197],"on":[198],"real-world":[200],"datasets":[201],"demonstrate":[202],"significant":[204],"performance":[205],"gain":[206],"achieved":[207],"baselines.":[215],"The":[216],"code":[217],"publicly":[219],"available":[220],"at":[221],"https://github.com/HKUDS/AutoST.":[222]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367046748","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":13},{"year":2023,"cited_by_count":7}],"updated_date":"2025-04-09T07:59:18.191411","created_date":"2023-04-27"}