{"id":"https://openalex.org/W4367047381","doi":"https://doi.org/10.1145/3543507.3583195","title":"Maximizing Submodular Functions for Recommendation in the Presence of Biases","display_name":"Maximizing Submodular Functions for Recommendation in the Presence of Biases","publication_year":2023,"publication_date":"2023-04-26","ids":{"openalex":"https://openalex.org/W4367047381","doi":"https://doi.org/10.1145/3543507.3583195"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3543507.3583195","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3543507.3583195","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3543507.3583195","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065512381","display_name":"Anay Mehrotra","orcid":"https://orcid.org/0000-0002-8566-5452"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Anay Mehrotra","raw_affiliation_strings":["Yale University, USA"],"affiliations":[{"raw_affiliation_string":"Yale University, USA","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063089732","display_name":"Nisheeth K. Vishnoi","orcid":"https://orcid.org/0000-0002-0255-1119"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"funder","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nisheeth K. Vishnoi","raw_affiliation_strings":["Yale University, USA"],"affiliations":[{"raw_affiliation_string":"Yale University, USA","institution_ids":["https://openalex.org/I32971472"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.715,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.624236,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"3625","last_page":"3636"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10720","display_name":"Complexity and Algorithms in Graphs","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/submodular-set-function","display_name":"Submodular set function","score":0.992243},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.5978755},{"id":"https://openalex.org/keywords/budget-constraint","display_name":"Budget constraint","score":0.5773548}],"concepts":[{"id":"https://openalex.org/C178621042","wikidata":"https://www.wikidata.org/wiki/Q7631710","display_name":"Submodular set function","level":2,"score":0.992243},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.6811595},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.5978755},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5901397},{"id":"https://openalex.org/C8505890","wikidata":"https://www.wikidata.org/wiki/Q605095","display_name":"Budget constraint","level":2,"score":0.5773548},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.4892106},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4708706},{"id":"https://openalex.org/C41045048","wikidata":"https://www.wikidata.org/wiki/Q202843","display_name":"Linear programming","level":2,"score":0.45406458},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.44158342},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4077852},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C133425853","wikidata":"https://www.wikidata.org/wiki/Q60571","display_name":"Neoclassical economics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3543507.3583195","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3543507.3583195","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02806","pdf_url":"https://arxiv.org/pdf/2305.02806","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3543507.3583195","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3543507.3583195","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CCF-2112665, IIS-2045951"}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1503396090","https://openalex.org/W1532325895","https://openalex.org/W1680189815","https://openalex.org/W1898824936","https://openalex.org/W1998789158","https://openalex.org/W2000042664","https://openalex.org/W2055421030","https://openalex.org/W2116354394","https://openalex.org/W2132651631","https://openalex.org/W2132736842","https://openalex.org/W2138993224","https://openalex.org/W2143996311","https://openalex.org/W2158392329","https://openalex.org/W2161343059","https://openalex.org/W2168535456","https://openalex.org/W2219888463","https://openalex.org/W2555804105","https://openalex.org/W2563852449","https://openalex.org/W2588799281","https://openalex.org/W2775334987","https://openalex.org/W2897955056","https://openalex.org/W2898970033","https://openalex.org/W3042160387","https://openalex.org/W3099751307","https://openalex.org/W3128736136","https://openalex.org/W3134430912","https://openalex.org/W3205573399","https://openalex.org/W4229573723","https://openalex.org/W4282977441","https://openalex.org/W4285059900","https://openalex.org/W4378188671"],"related_works":["https://openalex.org/W4313343266","https://openalex.org/W4302557420","https://openalex.org/W3204684126","https://openalex.org/W3013568067","https://openalex.org/W2950500962","https://openalex.org/W2950365512","https://openalex.org/W2915041254","https://openalex.org/W2896347948","https://openalex.org/W2062310236","https://openalex.org/W1608444752"],"abstract_inverted_index":{"Subset":[0],"selection":[1],"tasks,":[2],"arise":[3],"in":[4,114,133],"recommendation":[5],"systems":[6],"and":[7,10,33,186,200],"search":[8],"engines":[9],"ask":[11],"to":[12,40,66,80],"select":[13],"a":[14,124],"subset":[15,214],"of":[16,27,74,95,117,123,126,152,159,211,218],"items":[17,190],"that":[18,70,99,129,176,187,205],"maximize":[19],"the":[20,23,44,47,72,75,82,115,121,134,153,209,212],"value":[21],"for":[22,156,168,180,215],"user.":[24],"The":[25,171],"values":[26],"subsets":[28,175],"often":[29],"display":[30],"diminishing":[31],"returns,":[32],"hence,":[34],"submodular":[35,48,96,127,160,169,219],"functions":[36,128,131,220],"have":[37,63,67,177],"been":[38,64],"used":[39],"model":[41],"them.":[42],"If":[43],"inputs":[45,62],"defining":[46],"function":[49],"are":[50,84],"known,":[51],"then":[52],"existing":[53],"algorithms":[54],"can":[55,103],"be":[56],"used.":[57],"In":[58,194],"many":[59],"applications,":[60],"however,":[61],"observed":[65],"social":[68],"biases":[69],"reduce":[71],"utility":[73,83,113,155,179,210],"output":[76,213],"subset.":[77],"Hence,":[78],"interventions":[79,102,146],"improve":[81],"desired.":[85],"Prior":[86],"works":[87],"focus":[88],"on":[89],"maximizing":[90],"linear":[91,143],"functions\u2014a":[92],"special":[93],"case":[94],"functions\u2014and":[97],"show":[98],"fairness":[100],"constraint-based":[101,145],"not":[104],"only":[105],"ensure":[106],"proportional":[107],"representation":[108],"but":[109],"also":[110],"achieve":[111],"near-optimal":[112,178],"presence":[116],"biases.":[118],"We":[119],"study":[120],"maximization":[122],"family":[125,158,182,217],"capture":[130],"arising":[132],"aforementioned":[135],"applications.":[136],"Our":[137,162],"first":[138],"result":[139,164],"is":[140,165],"that,":[141],"unlike":[142],"functions,":[144],"cannot":[147],"guarantee":[148],"any":[149],"constant":[150],"fraction":[151],"optimal":[154],"this":[157,181,206,216],"functions.":[161],"second":[163],"an":[166],"algorithm":[167,172,207],"maximization.":[170],"provably":[173],"outputs":[174],"under":[183],"mild":[184],"assumptions":[185],"proportionally":[188],"represent":[189],"from":[191],"each":[192],"group.":[193],"empirical":[195],"evaluation,":[196],"with":[197],"both":[198],"synthetic":[199],"real-world":[201],"data,":[202],"we":[203],"observe":[204],"improves":[208],"over":[221],"baselines.":[222]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367047381","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-16T20:09:29.524135","created_date":"2023-04-27"}