{"id":"https://openalex.org/W4224037191","doi":"https://doi.org/10.1145/3523150.3523157","title":"DGE-GSIM: A multi-task dual graph embedding learning for graph similarity computation","display_name":"DGE-GSIM: A multi-task dual graph embedding learning for graph similarity computation","publication_year":2022,"publication_date":"2022-01-15","ids":{"openalex":"https://openalex.org/W4224037191","doi":"https://doi.org/10.1145/3523150.3523157"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3523150.3523157","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113747777","display_name":"Wenhui Tan","orcid":null},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenhui Tan","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101986225","display_name":"Peng Cao","orcid":"https://orcid.org/0000-0001-9546-7444"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Cao","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101562384","display_name":"Zhiyong Jin","orcid":"https://orcid.org/0000-0002-1272-8870"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhiyong Jin","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042436944","display_name":"Futao Luo","orcid":null},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Futao Luo","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059095952","display_name":"Guangqi Wen","orcid":"https://orcid.org/0000-0001-6786-6261"},"institutions":[{"id":"https://openalex.org/I9224756","display_name":"Northeastern University","ror":"https://ror.org/03awzbc87","country_code":"CN","type":"education","lineage":["https://openalex.org/I9224756"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangqi Wen","raw_affiliation_strings":["Northeastern University, China"],"affiliations":[{"raw_affiliation_string":"Northeastern University, China","institution_ids":["https://openalex.org/I9224756"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100415568","display_name":"Weiping Li","orcid":"https://orcid.org/0000-0003-3750-1653"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weiping Li","raw_affiliation_strings":["Peking University, China"],"affiliations":[{"raw_affiliation_string":"Peking University, China","institution_ids":["https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.324,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.685436,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"39","last_page":"47"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10887","display_name":"Bioinformatics and Genomic Networks","score":0.9748,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10269","display_name":"Epigenetics and DNA Methylation","score":0.9652,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graph-embedding","display_name":"Graph Embedding","score":0.5446226},{"id":"https://openalex.org/keywords/butterfly-graph","display_name":"Butterfly graph","score":0.5218405},{"id":"https://openalex.org/keywords/dual-graph","display_name":"Dual graph","score":0.49198243},{"id":"https://openalex.org/keywords/null-graph","display_name":"Null graph","score":0.49113724},{"id":"https://openalex.org/keywords/topological-graph-theory","display_name":"Topological graph theory","score":0.48251104},{"id":"https://openalex.org/keywords/complement-graph","display_name":"Complement graph","score":0.41574854}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5675799},{"id":"https://openalex.org/C22149727","wikidata":"https://www.wikidata.org/wiki/Q7940747","display_name":"Voltage graph","level":4,"score":0.56096584},{"id":"https://openalex.org/C75564084","wikidata":"https://www.wikidata.org/wiki/Q5597085","display_name":"Graph embedding","level":3,"score":0.5446226},{"id":"https://openalex.org/C18819970","wikidata":"https://www.wikidata.org/wiki/Q3035340","display_name":"Butterfly graph","level":5,"score":0.5218405},{"id":"https://openalex.org/C169827030","wikidata":"https://www.wikidata.org/wiki/Q2294516","display_name":"Dual graph","level":4,"score":0.49198243},{"id":"https://openalex.org/C17169500","wikidata":"https://www.wikidata.org/wiki/Q3033506","display_name":"Null graph","level":5,"score":0.49113724},{"id":"https://openalex.org/C157406716","wikidata":"https://www.wikidata.org/wiki/Q4115842","display_name":"Topological graph theory","level":5,"score":0.48251104},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.4525683},{"id":"https://openalex.org/C203776342","wikidata":"https://www.wikidata.org/wiki/Q1378376","display_name":"Line graph","level":3,"score":0.4426412},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4220861},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.41609257},{"id":"https://openalex.org/C168291704","wikidata":"https://www.wikidata.org/wiki/Q902252","display_name":"Complement graph","level":5,"score":0.41574854},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32680562},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31722754}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3523150.3523157","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"No.2020YFC0833302"}],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1597213869","https://openalex.org/W1605556478","https://openalex.org/W1985514943","https://openalex.org/W2078483536","https://openalex.org/W2116341502","https://openalex.org/W2152618599","https://openalex.org/W2507974895","https://openalex.org/W2558460151","https://openalex.org/W2558748708","https://openalex.org/W2906943923","https://openalex.org/W2907492528","https://openalex.org/W2963877604","https://openalex.org/W2964915865","https://openalex.org/W3139081114","https://openalex.org/W74055483"],"related_works":["https://openalex.org/W4224037191","https://openalex.org/W2954009223","https://openalex.org/W2900680118","https://openalex.org/W2793949464","https://openalex.org/W2371151138","https://openalex.org/W2278094798","https://openalex.org/W2071056049","https://openalex.org/W2048112267","https://openalex.org/W2014355235","https://openalex.org/W1999761254"],"abstract_inverted_index":{"Graph":[0,44,103,106],"similarity":[1,17,38,79,156,175],"estimation":[2,18,80],"is":[3],"a":[4,40,77,124,130,153,173,184],"challenging":[5],"task":[6],"due":[7],"to":[8,27,35,53,195],"the":[9,37,61,65,86,91,137,146,159,162,197,200],"complex":[10],"graph":[11,31,54,58,70,78,92,116,132,149,155,187],"structure.":[12],"To":[13,72],"achieve":[14],"an":[15,29,114],"exact":[16],"for":[19,56,105,128,176],"input":[20,177],"graphs,":[21],"two":[22],"critical":[23],"factors":[24],"are":[25],"how":[26,34],"learn":[28],"appropriate":[30],"embedding":[32,93,133],"and":[33,120,139,167],"compute":[36],"between":[39],"pair":[41],"of":[42,161,199],"graphs.":[43,178],"neural":[45,50],"networks":[46,51],"(GNN)":[47],"generalize":[48],"convolutional":[49],"(CNN)":[52],"data":[55],"learning":[57,89,126,129],"embeddings.":[59,71],"However,":[60],"GNN":[62],"models":[63],"ignore":[64],"edge":[66,87,115,140],"information":[67],"when":[68],"earning":[69],"solve":[73],"it,":[74],"we":[75,111,122,151],"propose":[76,123],"framework":[81,127],"by":[82],"taking":[83],"into":[84],"consideration":[85],"feature":[88],"during":[90],"learning.":[94,108],"We":[95,179],"name":[96],"our":[97],"approach":[98],"as":[99],"DGE-GSIM,":[100],"i.e.,":[101],"Dual":[102],"Embedding":[104],"SIMilarity":[107],"More":[109],"specifically,":[110],"firstly":[112],"construct":[113],"with":[117,134,142,145],"node-edge":[118],"switching,":[119],"then":[121],"multi-task":[125],"dual":[131,148],"simultaneously":[135],"considering":[136],"node":[138],"features":[141],"GNN.":[143],"Finally,":[144],"obtained":[147],"embedding,":[150],"develop":[152],"three-way":[154],"computation":[157],"from":[158],"perspectives":[160],"graph-graph":[163],"interaction,":[164],"node-node":[165],"interaction":[166],"node-graph":[168],"interaction.":[169],"It":[170],"can":[171],"model":[172],"comprehensive":[174],"conduct":[180],"extensive":[181],"experiments":[182],"on":[183,192],"very":[185],"popular":[186],"similarity/distance":[188],"metric,":[189],"GED,":[190],"based":[191],"Linux":[193],"dataset":[194],"demonstrate":[196],"effectiveness":[198],"proposed":[201],"method.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4224037191","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-10T01:19:23.037795","created_date":"2022-04-19"}