{"id":"https://openalex.org/W4306316904","doi":"https://doi.org/10.1145/3511808.3557485","title":"Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization","display_name":"Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization","publication_year":2022,"publication_date":"2022-10-16","ids":{"openalex":"https://openalex.org/W4306316904","doi":"https://doi.org/10.1145/3511808.3557485"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3511808.3557485","pdf_url":null,"source":{"id":"https://openalex.org/S4363608762","display_name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100432409","display_name":"Ning Liu","orcid":"https://orcid.org/0000-0002-8966-7869"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ning Liu","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000084858","display_name":"Songlei Jian","orcid":"https://orcid.org/0000-0002-1435-0410"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Songlei Jian","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100440903","display_name":"Dongsheng Li","orcid":"https://orcid.org/0000-0001-9743-2034"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dongsheng Li","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5091676049","display_name":"Hongzuo Xu","orcid":"https://orcid.org/0000-0001-8074-1244"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongzuo Xu","raw_affiliation_strings":["National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.885,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.550161,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"1299","last_page":"1308"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12292","display_name":"Graph Theory and Algorithms","score":0.9761,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.75262654},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.49994874}],"concepts":[{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.75262654},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7194458},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.49994874},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.48598704},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48387802},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.4440849},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4348079},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35901162},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.27851313},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.121301085},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3511808.3557485","pdf_url":null,"source":{"id":"https://openalex.org/S4363608762","display_name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62025208,61932001,62002371"}],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1999478155","https://openalex.org/W2008857988","https://openalex.org/W2099438806","https://openalex.org/W2104812688","https://openalex.org/W2112973039","https://openalex.org/W2122925692","https://openalex.org/W2142498761","https://openalex.org/W2147286743","https://openalex.org/W2729689113","https://openalex.org/W2788919350","https://openalex.org/W2808803559","https://openalex.org/W285471286","https://openalex.org/W2962756421","https://openalex.org/W3012816161","https://openalex.org/W3156823866","https://openalex.org/W3188982020"],"related_works":["https://openalex.org/W4390975304","https://openalex.org/W4287804464","https://openalex.org/W3094650923","https://openalex.org/W3022252430","https://openalex.org/W3015684221","https://openalex.org/W2953234277","https://openalex.org/W2900413183","https://openalex.org/W2626256601","https://openalex.org/W2387536556","https://openalex.org/W147410782"],"abstract_inverted_index":{"Graph":[0],"pooling":[1,19,33,56,72,191],"plays":[2],"a":[3,51,65,106,128],"vital":[4],"role":[5],"in":[6,138],"learning":[7,158],"graph":[8,18,55,150],"embeddings.":[9],"Due":[10],"to":[11,92,112,193],"the":[12,41,102,143,169,179],"lack":[13],"of":[14,116,142,171],"label":[15],"information,":[16],"unsupervised":[17,53,163],"has":[20],"received":[21],"much":[22],"attention,":[23],"primarily":[24],"via":[25],"mutual":[26],"information":[27,97,122],"(MI).":[28],"However,":[29],"most":[30],"existing":[31],"MI-based":[32,80],"methods":[34,165,192],"only":[35],"preserve":[36],"node":[37,95,109],"features":[38,141],"while":[39],"overlooking":[40],"hierarchical":[42,54,156],"substructural":[43],"information.":[44],"In":[45],"this":[46],"paper,":[47],"we":[48,126],"propose":[49,127],"SMIP,":[50],"novel":[52],"method":[57],"based":[58,69],"on":[59,70,147],"substructure-sensitive":[60,79,181],"MI":[61,84,90,104,124,131,182],"maximization.":[62],"SMIP":[63,135],"reconstructs":[64],"hard-style":[66],"substructure":[67],"encoder":[68],"cluster-based":[71,190],"paradigm,":[73],"and":[74,85,101,119,166],"trains":[75],"it":[76],"with":[77],"two":[78],"objectives,":[81],"i.e.,":[82],"node-substructure":[83,89],"node-node":[86,103],"MI.":[87],"The":[88],"guides":[91],"transfer":[93],"maximum":[94],"feature":[96],"into":[98,188],"corresponded":[99],"substructures":[100],"guarantees":[105],"more":[107,136],"accurate":[108],"allocation.":[110],"Moreover,":[111],"avoid":[113],"extra":[114],"computation":[115],"augmented":[117],"graphs":[118],"prevent":[120],"noise":[121],"during":[123],"estimation,":[125],"local-scope":[129],"contrastive":[130],"estimation":[132],"method,":[133],"making":[134],"potent":[137],"capturing":[139],"intrinsic":[140],"input":[144],"graph.":[145],"Experiments":[146],"six":[148],"benchmark":[149],"classification":[151],"datasets":[152],"demonstrate":[153],"that":[154,178],"our":[155],"deep":[157],"approach":[159],"outperforms":[160],"all":[161],"state-of-the-art":[162],"GNN-based":[164],"even":[167],"surpasses":[168],"performance":[170],"nine":[172],"supervised":[173],"ones.":[174],"Generalization":[175],"study":[176],"shows":[177],"proposed":[180],"objective":[183],"can":[184],"be":[185],"successfully":[186],"embedded":[187],"other":[189],"improve":[194],"their":[195],"performance.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306316904","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5}],"updated_date":"2025-03-19T11:41:38.038359","created_date":"2022-10-16"}