{"id":"https://openalex.org/W3183813924","doi":"https://doi.org/10.1145/3510835","title":"DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference","display_name":"DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference","publication_year":2022,"publication_date":"2022-05-05","ids":{"openalex":"https://openalex.org/W3183813924","doi":"https://doi.org/10.1145/3510835","mag":"3183813924"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3510835","pdf_url":null,"source":{"id":"https://openalex.org/S105046310","display_name":"ACM Transactions on Design Automation of Electronic Systems","issn_l":"1084-4309","issn":["1084-4309","1557-7309"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2107.07706","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065172226","display_name":"Chaojian Li","orcid":"https://orcid.org/0000-0003-4030-9777"},"institutions":[{"id":"https://openalex.org/I74775410","display_name":"Rice University","ror":"https://ror.org/008zs3103","country_code":"US","type":"funder","lineage":["https://openalex.org/I74775410"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chaojian Li","raw_affiliation_strings":["Rice University, Houston, TX, 77005"],"affiliations":[{"raw_affiliation_string":"Rice University, Houston, TX, 77005","institution_ids":["https://openalex.org/I74775410"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013562664","display_name":"Wuyang Chen","orcid":"https://orcid.org/0000-0002-7746-4191"},"institutions":[{"id":"https://openalex.org/I86519309","display_name":"The University of Texas at Austin","ror":"https://ror.org/00hj54h04","country_code":"US","type":"funder","lineage":["https://openalex.org/I86519309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wuyang Chen","raw_affiliation_strings":["University of Texas at Austin, Austin, TX, 78712"],"affiliations":[{"raw_affiliation_string":"University of Texas at Austin, Austin, TX, 78712","institution_ids":["https://openalex.org/I86519309"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017532432","display_name":"Yuchen Gu","orcid":"https://orcid.org/0000-0002-6775-3985"},"institutions":[{"id":"https://openalex.org/I74775410","display_name":"Rice University","ror":"https://ror.org/008zs3103","country_code":"US","type":"funder","lineage":["https://openalex.org/I74775410"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yuchen Gu","raw_affiliation_strings":["Rice University, Houston, TX, 77005"],"affiliations":[{"raw_affiliation_string":"Rice University, Houston, TX, 77005","institution_ids":["https://openalex.org/I74775410"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103073431","display_name":"Tianlong Chen","orcid":"https://orcid.org/0000-0001-7774-8197"},"institutions":[{"id":"https://openalex.org/I86519309","display_name":"The University of Texas at Austin","ror":"https://ror.org/00hj54h04","country_code":"US","type":"funder","lineage":["https://openalex.org/I86519309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianlong Chen","raw_affiliation_strings":["University of Texas at Austin, Austin, TX, 78712"],"affiliations":[{"raw_affiliation_string":"University of Texas at Austin, Austin, TX, 78712","institution_ids":["https://openalex.org/I86519309"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061572132","display_name":"Yonggan Fu","orcid":"https://orcid.org/0000-0002-7483-2921"},"institutions":[{"id":"https://openalex.org/I74775410","display_name":"Rice University","ror":"https://ror.org/008zs3103","country_code":"US","type":"funder","lineage":["https://openalex.org/I74775410"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yonggan Fu","raw_affiliation_strings":["Rice University, Houston, TX, 77005"],"affiliations":[{"raw_affiliation_string":"Rice University, Houston, TX, 77005","institution_ids":["https://openalex.org/I74775410"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048522863","display_name":"Zhangyang Wang","orcid":"https://orcid.org/0000-0002-2050-5693"},"institutions":[{"id":"https://openalex.org/I86519309","display_name":"The University of Texas at Austin","ror":"https://ror.org/00hj54h04","country_code":"US","type":"funder","lineage":["https://openalex.org/I86519309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhangyang Wang","raw_affiliation_strings":["University of Texas at Austin, Austin, TX, 78712"],"affiliations":[{"raw_affiliation_string":"University of Texas at Austin, Austin, TX, 78712","institution_ids":["https://openalex.org/I86519309"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019582323","display_name":"Yingyan Lin","orcid":"https://orcid.org/0000-0001-5946-203X"},"institutions":[{"id":"https://openalex.org/I74775410","display_name":"Rice University","ror":"https://ror.org/008zs3103","country_code":"US","type":"funder","lineage":["https://openalex.org/I74775410"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yingyan Lin","raw_affiliation_strings":["Rice University, Houston, TX, 77005"],"affiliations":[{"raw_affiliation_string":"Rice University, Houston, TX, 77005","institution_ids":["https://openalex.org/I74775410"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":"27","issue":"5","first_page":"1","last_page":"20"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.4693274}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8389208},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7944683},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.65802854},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6503551},{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.4693274},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4627374},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45381778},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43395874},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.42441338},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33043194},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16581315}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3510835","pdf_url":null,"source":{"id":"https://openalex.org/S105046310","display_name":"ACM Transactions on Design Automation of Electronic Systems","issn_l":"1084-4309","issn":["1084-4309","1557-7309"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.07706","pdf_url":"https://arxiv.org/pdf/2107.07706","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.07706","pdf_url":"https://arxiv.org/pdf/2107.07706","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.63}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":55,"referenced_works":["https://openalex.org/W1497158395","https://openalex.org/W1650039045","https://openalex.org/W1861492603","https://openalex.org/W1913356549","https://openalex.org/W2031489346","https://openalex.org/W2047255179","https://openalex.org/W2140196014","https://openalex.org/W2194775991","https://openalex.org/W2340897893","https://openalex.org/W2419448466","https://openalex.org/W2524428287","https://openalex.org/W2554302513","https://openalex.org/W2560023338","https://openalex.org/W2601564443","https://openalex.org/W2606492274","https://openalex.org/W2787752464","https://openalex.org/W2795221318","https://openalex.org/W2799352588","https://openalex.org/W285310959","https://openalex.org/W2886934227","https://openalex.org/W2897824775","https://openalex.org/W2899771611","https://openalex.org/W2945357879","https://openalex.org/W2946824094","https://openalex.org/W2948223045","https://openalex.org/W2954054736","https://openalex.org/W2961839838","https://openalex.org/W2962851801","https://openalex.org/W2963125010","https://openalex.org/W2963163009","https://openalex.org/W2963363373","https://openalex.org/W2963387436","https://openalex.org/W2963526497","https://openalex.org/W2963674932","https://openalex.org/W2963840672","https://openalex.org/W2964217532","https://openalex.org/W2964233199","https://openalex.org/W2964299589","https://openalex.org/W2964309882","https://openalex.org/W2971861286","https://openalex.org/W2974829707","https://openalex.org/W2976872728","https://openalex.org/W2978290191","https://openalex.org/W2981669902","https://openalex.org/W2994671176","https://openalex.org/W2995816250","https://openalex.org/W3001665736","https://openalex.org/W3026990304","https://openalex.org/W3034215213","https://openalex.org/W3037032032","https://openalex.org/W3099365437","https://openalex.org/W3177510987","https://openalex.org/W3203251378","https://openalex.org/W4287717143","https://openalex.org/W4293406525"],"related_works":["https://openalex.org/W4323893507","https://openalex.org/W4313052709","https://openalex.org/W4298131179","https://openalex.org/W3199300986","https://openalex.org/W3144569342","https://openalex.org/W3011384228","https://openalex.org/W2945274617","https://openalex.org/W2375430703","https://openalex.org/W2185902295","https://openalex.org/W2103507220"],"abstract_inverted_index":{"Semantic":[0],"segmentation":[1,23,76,95,105,208,213,227],"for":[2,12,92],"scene":[3,32],"understanding":[4],"is":[5],"nowadays":[6],"widely":[7],"demanded,":[8],"raising":[9],"significant":[10],"challenges":[11],"the":[13,38,43,52,65,149,154,167,171,177,193,197,253],"algorithm":[14],"efficiency,":[15],"especially":[16],"its":[17],"applications":[18],"on":[19,29,110],"resource-limited":[20],"platforms.":[21],"Current":[22],"models":[24,209],"are":[25,61],"trained":[26],"and":[27,35,54,59,71,98,128,143,183,202,234],"evaluated":[28],"massive":[30],"high-resolution":[31],"images":[33,142],"(\u201cdata-level\u201d)":[34],"suffer":[36],"from":[37,42,102],"expensive":[39,232],"computation":[40],"arising":[41],"required":[44],"multi-scale":[45],"aggregation":[46],"(\u201cnetwork":[47],"level\u201d).":[48],"In":[49],"both":[50,124],"folds,":[51],"computational":[53,73],"energy":[55,244],"costs":[56],"in":[57,162,246,249],"training":[58,97,150,217,229],"inference":[60,99],"notable":[62],"due":[63],"to":[64,148,164,189,195],"often":[66],"desired":[67],"large":[68],"input":[69,125,141,172,181],"resolutions":[70],"heavy":[72],"burden":[74],"of":[75,180],"models.":[77],"To":[78],"this":[79],"end,":[80],"we":[81],"propose":[82],"DANCE,":[83],"general":[84],"automated":[85,119,135],"DA":[86],"ta-":[87],"N":[88],"etwork":[89],"C":[90],"o-optimization":[91],"E":[93],"fficient":[94],"model":[96],".":[100],"Distinct":[101],"existing":[103],"efficient":[104,226],"approaches":[106],"that":[107,220],"focus":[108],"merely":[109],"light-weight":[111],"network":[112,129,194],"design,":[113],"DANCE":[114,133,221,240],"distinguishes":[115],"itself":[116],"as":[117],"an":[118],"simultaneous":[120],"data-network":[121],"co-optimization":[122],"via":[123],"data":[126,136],"manipulation":[127],"architecture":[130],"slimming.":[131],"Specifically,":[132,239],"integrates":[134],"slimming":[137,165],"which":[138],"adaptively":[139,191],"downsamples/drops":[140],"controls":[144],"their":[145],"corresponding":[146],"contribution":[147],"loss":[151],"guided":[152],"by":[153,255],"images\u2019":[155],"spatial":[156],"complexity.":[157],"Such":[158],"a":[159],"downsampling":[160],"operation,":[161],"addition":[163],"down":[166],"cost":[168],"associated":[169],"with":[170,210],"size":[173],"directly,":[174],"also":[175,190],"shrinks":[176],"dynamic":[178],"range":[179],"object":[182],"context":[184],"scales,":[185],"therefore":[186],"motivating":[187],"us":[188],"slim":[192],"match":[196],"downsampled":[198],"data.":[199],"Extensive":[200],"experiments":[201],"ablating":[203],"studies":[204],"(on":[205],"four":[206],"SOTA":[207],"three":[211],"popular":[212],"datasets":[214],"under":[215],"two":[216],"settings)":[218],"demonstrate":[219],"can":[222,241],"achieve":[223],"\u201call-win\u201d":[224],"towards":[225],"(reduced":[228],"cost,":[230],"less":[231],"inference,":[233,250],"better":[235],"mean":[236],"Intersection-over-Union":[237],"(mIoU)).":[238],"reduce":[242],"\u219325%\u2013\u219377%":[243],"consumption":[245],"training,":[247],"\u219331%\u2013\u219356%":[248],"while":[251],"boosting":[252],"mIoU":[254],"\u21930.71%\u2013\u2191":[256],"13.34%.":[257]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3183813924","counts_by_year":[],"updated_date":"2025-03-09T05:04:29.547666","created_date":"2021-08-02"}