{"id":"https://openalex.org/W4304091837","doi":"https://doi.org/10.1145/3503161.3548225","title":"Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation","display_name":"Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation","publication_year":2022,"publication_date":"2022-10-10","ids":{"openalex":"https://openalex.org/W4304091837","doi":"https://doi.org/10.1145/3503161.3548225"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3503161.3548225","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2204.07730","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063689658","display_name":"Yulei Lu","orcid":null},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yulei Lu","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010961909","display_name":"Yawei Luo","orcid":"https://orcid.org/0000-0002-7037-1806"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yawei Luo","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100425448","display_name":"Li Zhang","orcid":"https://orcid.org/0000-0001-7914-0679"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Li Zhang","raw_affiliation_strings":["Zhejiang Insigma Digital Technology Co., Ltd., Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang Insigma Digital Technology Co., Ltd., Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046994319","display_name":"Zheyang Li","orcid":"https://orcid.org/0000-0002-0229-8707"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zheyang Li","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005421447","display_name":"Yi Yang","orcid":"https://orcid.org/0000-0002-0512-880X"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Yang","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101485989","display_name":"Jun Xiao","orcid":"https://orcid.org/0000-0002-6142-9914"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Xiao","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.891,"has_fulltext":false,"cited_by_count":18,"citation_normalized_percentile":{"value":0.658299,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.978,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.6208634},{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.603276},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5598748},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.5089369}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.696016},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.6208634},{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.603276},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56494784},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5598748},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.55871195},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5535039},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52631825},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.5089369},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37376893},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20925435},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3503161.3548225","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.07730","pdf_url":"https://arxiv.org/pdf/2204.07730","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2204.07730","pdf_url":"https://arxiv.org/pdf/2204.07730","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.82}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"U19B2043, 61976185"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"226-2022-00051"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1903029394","https://openalex.org/W2034368206","https://openalex.org/W2108598243","https://openalex.org/W2165880886","https://openalex.org/W2194775991","https://openalex.org/W2412782625","https://openalex.org/W2431874326","https://openalex.org/W2487365028","https://openalex.org/W2560023338","https://openalex.org/W2895281799","https://openalex.org/W2962687275","https://openalex.org/W2962859295","https://openalex.org/W2963073217","https://openalex.org/W2963107255","https://openalex.org/W2963532621","https://openalex.org/W2963881378","https://openalex.org/W2964309882","https://openalex.org/W2969893028","https://openalex.org/W2972285644","https://openalex.org/W2986831462","https://openalex.org/W3015217610","https://openalex.org/W3034562924","https://openalex.org/W3035294798","https://openalex.org/W3035682985","https://openalex.org/W3108189450","https://openalex.org/W3134134173","https://openalex.org/W3175294391","https://openalex.org/W3180439858","https://openalex.org/W3195315815"],"related_works":["https://openalex.org/W2970216048","https://openalex.org/W2944661354","https://openalex.org/W2888231351","https://openalex.org/W2886616187","https://openalex.org/W2546942002","https://openalex.org/W2532775738","https://openalex.org/W2517539590","https://openalex.org/W2382607599","https://openalex.org/W2350878010","https://openalex.org/W2060018656"],"abstract_inverted_index":{"A":[0],"thriving":[1],"trend":[2],"for":[3,14,122],"domain":[4,16,185],"adaptive":[5],"segmentation":[6],"endeavors":[7],"to":[8,32,71,79,91,110,149,162,177],"generate":[9],"the":[10,19,33,38,44,49,65,88,93,100,107,123,140,143,150,179,188,195,232,250],"high-quality":[11],"pseudo":[12,50,95],"labels":[13,96],"target":[15,94,191],"and":[17,47,135,168,186,204,207,210,238,244,257],"retrain":[18],"segmentor":[20],"on":[21,81,194,202],"them.":[22],"Under":[23],"this":[24,60,158],"self-training":[25,222],"paradigm,":[26],"some":[27,226],"competitive":[28,221],"methods":[29,102],"have":[30],"sought":[31],"latent-space":[34],"information,":[35],"which":[36,115,146,228,247],"establishes":[37],"feature":[39,144],"centroids":[40],"(a.k.a":[41],"prototypes)":[42],"of":[43,85,99,142,152,183,190,215,252],"semantic":[45],"classes":[46],"determines":[48],"label":[51],"candidates":[52],"by":[53],"their":[54],"distances":[55],"from":[56,231],"these":[57],"centroids.":[58],"In":[59],"paper,":[61],"we":[62,104,160],"argue":[63],"that":[64],"latent":[66],"space":[67],"contains":[68],"more":[69],"information":[70],"be":[72,117],"exploited":[73],"thus":[74],"taking":[75],"one":[76],"step":[77],"further":[78,248],"capitalize":[80],"it.":[82],"Firstly,":[83],"instead":[84],"merely":[86],"using":[87],"source-domain":[89],"prototypes":[90,109,170],"determine":[92],"as":[97,132,236],"most":[98],"traditional":[101],"do,":[103],"bidirectionally":[105],"produce":[106],"target-domain":[108],"degrade":[111],"those":[112],"source":[113,184],"features":[114],"might":[116],"too":[118],"hard":[119],"or":[120],"disturbed":[121],"adaptation.":[124],"Secondly,":[125],"existing":[126],"attempts":[127],"simply":[128],"model":[129,258],"each":[130,164],"category":[131,165],"a":[133],"single":[134],"isotropic":[136],"prototype":[137],"while":[138],"ignoring":[139],"variance":[141],"distribution,":[145],"could":[147],"lead":[148],"confusion":[151,234],"similar":[153],"categories.":[154],"To":[155],"cope":[156],"with":[157,166],"issue,":[159],"propose":[161],"represent":[163],"multiple":[167],"anisotropic":[169],"via":[171],"Gaussian":[172],"Mixture":[173],"Model,":[174],"in":[175,213,225],"order":[176],"fit":[178],"de":[180],"facto":[181],"distribution":[182],"estimate":[187],"likelihood":[189],"samples":[192],"based":[193],"probability":[196],"density.":[197],"We":[198],"apply":[199],"our":[200,240,253],"method":[201,241],"GTA5->Cityscapes":[203],"Synthia->Cityscapes":[205],"tasks":[206],"achieve":[208],"61.2%":[209],"62.8%":[211],"respectively":[212],"terms":[214],"mean":[216],"IoU,":[217],"substantially":[218],"outperforming":[219],"other":[220],"methods.":[223],"Noticeably,":[224],"categories":[227],"severely":[229],"suffer":[230],"categorical":[233],"such":[235],"\"truck\"":[237],"\"bus\",":[239],"achieves":[242],"56.4%":[243],"68.8%":[245],"respectively,":[246],"demonstrates":[249],"effectiveness":[251],"design.":[254],"The":[255],"code":[256],"are":[259],"available":[260],"at":[261],"https://github.com/luyvlei/BiSMAPs.":[262]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4304091837","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":10}],"updated_date":"2024-12-14T01:26:25.287105","created_date":"2022-10-10"}