{"id":"https://openalex.org/W4304083966","doi":"https://doi.org/10.1145/3503161.3548045","title":"Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled Learning","display_name":"Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled Learning","publication_year":2022,"publication_date":"2022-10-10","ids":{"openalex":"https://openalex.org/W4304083966","doi":"https://doi.org/10.1145/3503161.3548045"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3503161.3548045","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2211.16756","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101908952","display_name":"Chengming Xu","orcid":"https://orcid.org/0000-0003-3891-2227"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengming Xu","raw_affiliation_strings":["Fudan University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Fudan University, Shanghai, China","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100322179","display_name":"Chen Liu","orcid":"https://orcid.org/0000-0002-8641-3097"},"institutions":[{"id":"https://openalex.org/I200769079","display_name":"Hong Kong University of Science and Technology","ror":"https://ror.org/00q4vv597","country_code":"HK","type":"funder","lineage":["https://openalex.org/I200769079"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"funder","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Chen Liu","raw_affiliation_strings":["Hong Kong University of Science and Technology, Hong Kong, China"],"affiliations":[{"raw_affiliation_string":"Hong Kong University of Science and Technology, Hong Kong, China","institution_ids":["https://openalex.org/I200769079","https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032912558","display_name":"Siqian Yang","orcid":"https://orcid.org/0000-0001-6100-3414"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Siqian Yang","raw_affiliation_strings":["Tencent Youtu Lab, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab, Shanghai, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yabiao Wang","raw_affiliation_strings":["Tencent Youtu Lab, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab, Shanghai, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100669780","display_name":"Shijie Zhang","orcid":"https://orcid.org/0000-0001-5394-3991"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shijie Zhang","raw_affiliation_strings":["Fudan University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Fudan University, Shanghai, China","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073534739","display_name":"Lijie Jia","orcid":"https://orcid.org/0000-0002-4649-8671"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lijie Jia","raw_affiliation_strings":["Shanghai Jiaotong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiaotong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084959430","display_name":"Yanwei Fu","orcid":"https://orcid.org/0000-0002-6595-6893"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanwei Fu","raw_affiliation_strings":["Fudan University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Fudan University, Shanghai, China","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":5,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.147,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.289553,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":"33","issue":null,"first_page":"2719","last_page":"2729"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/trustworthiness","display_name":"Trustworthiness","score":0.6011802},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.5296324}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7173939},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.66564554},{"id":"https://openalex.org/C153701036","wikidata":"https://www.wikidata.org/wiki/Q659974","display_name":"Trustworthiness","level":2,"score":0.6011802},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5607556},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.5396663},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.5296324},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5204125},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.49804926},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.48881742},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.45033956},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.4227711},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3396646},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15240636},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.122493684},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3503161.3548045","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.16756","pdf_url":"https://arxiv.org/pdf/2211.16756","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.16756","pdf_url":"https://arxiv.org/pdf/2211.16756","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2038553416","https://openalex.org/W2124219775","https://openalex.org/W2134510195","https://openalex.org/W2338972621","https://openalex.org/W2592335154","https://openalex.org/W2963697299","https://openalex.org/W2964274690","https://openalex.org/W3001197829","https://openalex.org/W3008548424","https://openalex.org/W3034684132","https://openalex.org/W3035524453","https://openalex.org/W3036224891","https://openalex.org/W3171007011","https://openalex.org/W3190417026"],"related_works":["https://openalex.org/W4311804456","https://openalex.org/W2735662278","https://openalex.org/W2623658258","https://openalex.org/W2382615723","https://openalex.org/W2370459448","https://openalex.org/W2165912799","https://openalex.org/W2143413548","https://openalex.org/W2105067402","https://openalex.org/W1987484445","https://openalex.org/W1969219540"],"abstract_inverted_index":{"Positive-Unlabeled":[0],"(PU)":[1],"learning":[2,25,212],"aims":[3],"to":[4,31,55,80,131],"learn":[5],"a":[6,167,193,255,264,273],"model":[7,245,253,279],"with":[8,17,192,230,298],"rare":[9],"positive":[10,46,69,108],"samples":[11,47,109,205,235],"and":[12,50,78,100,141,143,175,209,216,243,263,277,283,288,303,313],"abundant":[13],"unlabeled":[14,63,158,228],"samples.":[15,70,250],"Compared":[16],"classical":[18],"binary":[19],"classification,":[20],"the":[21,32,43,57,68,92,115,126,132,153,171,179,189,199,207,210,227,241,252,325],"task":[22],"of":[23,34,42,61,125,134,156,169,202,204,307,318,327],"PU":[24],"is":[26,52,75,120],"much":[27,294],"more":[28],"challenging":[29],"due":[30],"existence":[33],"many":[35,60,81],"incompletely-annotated":[36],"data":[37,64,174,270],"instances.":[38],"Since":[39],"only":[40,105],"part":[41],"most":[44,124],"confident":[45],"are":[48,246],"available":[49],"evidence":[51],"not":[53,176],"enough":[54],"categorize":[56],"rest":[58],"samples,":[59],"these":[62],"may":[65,104],"also":[66],"be":[67,112],"Research":[71],"on":[72,187,301],"this":[73,118,183,221],"topic":[74],"particularly":[76],"useful":[77],"essential":[79],"real-world":[82],"tasks":[83,94],"which":[84,160,271],"demand":[85],"very":[86],"expensive":[87],"labelling":[88],"cost.":[89],"For":[90],"example,":[91],"recognition":[93,103],"in":[95,163,206],"disease":[96],"diagnosis,":[97],"recommendation":[98],"system":[99],"satellite":[101],"image":[102],"have":[106,128,237],"few":[107],"that":[110,236],"can":[111,161],"annotated":[113],"by":[114],"experts.":[116],"While":[117],"problem":[119],"receiving":[121],"increasing":[122],"attention,":[123],"efforts":[127],"been":[129],"dedicated":[130],"design":[133],"trustworthy":[135],"risk":[136],"estimators":[137],"such":[138],"as":[139,166,248],"uPU":[140],"nnPU":[142,191],"direct":[144],"knowledge":[145],"distillation,":[146],"e.g.,":[147],"Self-PU.":[148],"These":[149],"methods":[150,300],"mainly":[151],"omit":[152],"intrinsic":[154,200],"hardness":[155,203],"some":[157],"data,":[159],"result":[162],"sub-optimal":[164],"performance":[165],"consequence":[168],"fitting":[170],"easy":[172,215,261],"noisy":[173],"sufficiently":[177],"utilizing":[178],"hard":[180,217,249,269],"data.":[181,218],"In":[182],"paper,":[184],"we":[185,223],"focus":[186],"improving":[188],"commonly-used":[190],"novel":[194],"training":[195],"pipeline.":[196],"We":[197],"highlight":[198],"difference":[201],"dataset":[208,229],"proper":[211],"strategies":[213],"for":[214,260,268,280,285],"By":[219],"considering":[220],"fact,":[222],"propose":[224],"first":[225],"splitting":[226],"an":[231],"early-stop":[232],"strategy.":[233],"The":[234,321],"inconsistent":[238],"predictions":[239],"between":[240,275],"temporary":[242],"base":[244,278],"considered":[247],"Then":[251],"utilizes":[254],"noise-tolerant":[256],"Jensen-Shannon":[257],"divergence":[258],"loss":[259],"data;":[262],"dual-source":[265],"consistency":[266],"regularization":[267],"includes":[272],"cross-consistency":[274],"student":[276],"low-level":[281],"features":[282,287],"self-consistency":[284],"high-level":[286],"predictions,":[289],"respectively.":[290],"Our":[291],"method":[292],"achieves":[293],"better":[295],"results":[296,323],"compared":[297],"existing":[299],"CIFAR10":[302],"two":[304],"medical":[305],"datasets":[306],"liver":[308],"cancer":[309],"survival":[310],"time":[311],"prediction,":[312],"low":[314],"blood":[315],"pressure":[316],"diagnosis":[317],"pregnant,":[319],"individually.":[320],"experimental":[322],"validates":[324],"efficacy":[326],"our":[328],"proposed":[329],"method.":[330]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4304083966","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-03T05:24:32.520943","created_date":"2022-10-10"}