{"id":"https://openalex.org/W4205395153","doi":"https://doi.org/10.1145/3493700.3493726","title":"Learning to Predict Two-Wheeler Travel Distance","display_name":"Learning to Predict Two-Wheeler Travel Distance","publication_year":2022,"publication_date":"2022-01-07","ids":{"openalex":"https://openalex.org/W4205395153","doi":"https://doi.org/10.1145/3493700.3493726"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3493700.3493726","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062372123","display_name":"Gaurav Pawar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gaurav Pawar","raw_affiliation_strings":["Bundl Technologies Pvt Ltd, IN"],"affiliations":[{"raw_affiliation_string":"Bundl Technologies Pvt Ltd, IN","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103222238","display_name":"Abhinav Ganesan","orcid":"https://orcid.org/0000-0002-0952-798X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Abhinav Ganesan","raw_affiliation_strings":["Bundl Technologies Pvt Ltd, IN"],"affiliations":[{"raw_affiliation_string":"Bundl Technologies Pvt Ltd, IN","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067358440","display_name":"Ritwik Prashant Moghe","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ritwik Moghe","raw_affiliation_strings":["Bundl Technologies Pvt Ltd, IN"],"affiliations":[{"raw_affiliation_string":"Bundl Technologies Pvt Ltd, IN","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008023589","display_name":"Bharat Nayak","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bharat Nayak","raw_affiliation_strings":["Bundl Technologies Pvt Ltd, IN"],"affiliations":[{"raw_affiliation_string":"Bundl Technologies Pvt Ltd, IN","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050964899","display_name":"Tanya Khanna","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tanya Khanna","raw_affiliation_strings":["Bundl Technologies Pvt Ltd, IN"],"affiliations":[{"raw_affiliation_string":"Bundl Technologies Pvt Ltd, IN","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070509394","display_name":"Kranthi Mitra Adusimilli","orcid":null},"institutions":[{"id":"https://openalex.org/I4210125969","display_name":"a.i. solutions (United States)","ror":"https://ror.org/02nt9wa64","country_code":"US","type":"company","lineage":["https://openalex.org/I4210125969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kranthi Mitra Adusimilli","raw_affiliation_strings":["Vika AI Solutions, IN"],"affiliations":[{"raw_affiliation_string":"Vika AI Solutions, IN","institution_ids":["https://openalex.org/I4210125969"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":"153","last_page":"161"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/distance-measures","display_name":"Distance measures","score":0.5224711},{"id":"https://openalex.org/keywords/distance-decay","display_name":"Distance decay","score":0.50805545},{"id":"https://openalex.org/keywords/geographic-coordinate-system","display_name":"Geographic coordinate system","score":0.47617882},{"id":"https://openalex.org/keywords/geographical-distance","display_name":"Geographical distance","score":0.4419477}],"concepts":[{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.6579362},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59073424},{"id":"https://openalex.org/C2639959","wikidata":"https://www.wikidata.org/wiki/Q1344778","display_name":"Distance measures","level":2,"score":0.5224711},{"id":"https://openalex.org/C18665432","wikidata":"https://www.wikidata.org/wiki/Q5282864","display_name":"Distance decay","level":2,"score":0.50805545},{"id":"https://openalex.org/C503872463","wikidata":"https://www.wikidata.org/wiki/Q159595","display_name":"Distance education","level":2,"score":0.4890426},{"id":"https://openalex.org/C123046963","wikidata":"https://www.wikidata.org/wiki/Q22664","display_name":"Geographic coordinate system","level":2,"score":0.47617882},{"id":"https://openalex.org/C2780069185","wikidata":"https://www.wikidata.org/wiki/Q7977945","display_name":"Equivalence (formal languages)","level":2,"score":0.4479574},{"id":"https://openalex.org/C170130773","wikidata":"https://www.wikidata.org/wiki/Q216378","display_name":"Usability","level":2,"score":0.44406444},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.44246194},{"id":"https://openalex.org/C79876807","wikidata":"https://www.wikidata.org/wiki/Q3030660","display_name":"Geographical distance","level":3,"score":0.4419477},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4276684},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35471243},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.30508417},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27274925},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.23686203},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.21648854},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.14154926},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.0},{"id":"https://openalex.org/C26271046","wikidata":"https://www.wikidata.org/wiki/Q187097","display_name":"Economic geography","level":1,"score":0.0},{"id":"https://openalex.org/C145420912","wikidata":"https://www.wikidata.org/wiki/Q853077","display_name":"Mathematics education","level":1,"score":0.0},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3493700.3493726","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Zero hunger","id":"https://metadata.un.org/sdg/2","score":0.47}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W1969483458","https://openalex.org/W1989750313","https://openalex.org/W2135822894","https://openalex.org/W2520841747","https://openalex.org/W2922153578"],"related_works":["https://openalex.org/W4280556553","https://openalex.org/W4241829207","https://openalex.org/W3183115929","https://openalex.org/W3014959776","https://openalex.org/W28709562","https://openalex.org/W2074129003","https://openalex.org/W2071188937","https://openalex.org/W1992586206","https://openalex.org/W1978576950","https://openalex.org/W192163082"],"abstract_inverted_index":{"Estimating":[0],"travel":[1,96],"distance":[2,80,97,114,158,166,200,217,242,248,296,309],"between":[3,22,159,212,254],"two":[4,23],"geographical":[5],"locations":[6,24],"is":[7,25,183,275],"one":[8],"of":[9,18,58,65,94,104,113,142,195,198,267],"the":[10,56,143,164,169,172,176,188,191,196,203,213,222,255,261,265,272,290],"primary":[11],"services":[12],"sought":[13],"after":[14],"by":[15,84,162,185],"retail":[16],"users":[17],"digital":[19],"maps.":[20],"Distance":[21,130],"also":[26,117,136],"a":[27,40,62,150,209,234,241,251,285,306,311],"fundamental":[28],"requirement":[29],"for":[30,77,270],"online":[31],"food":[32],"ordering":[33],"and":[34,74,175,225,260,297],"delivery":[35,66,75],"platforms":[36],"which":[37,106,271],"operate":[38],"in":[39,98,123,190,233,277,289,301],"hyperlocal":[41],"setting.":[42],"The":[43,79,100,181,215,281],"distances":[44],"are":[45,89,116,135,219,229],"used":[46,109,220,230,276],"at":[47,50],"enterprise":[48],"scale":[49],"decision":[51],"points":[52],"such":[53],"as":[54,110,221,231,292,303,316],"deciding":[55],"set":[57,197],"restaurants":[59],"shown":[60],"to":[61,69,72,120,139,156,294,305],"customer,":[63],"assignment":[64],"partners":[67],"(DPs)":[68],"customers,":[70],"payout":[71],"DPs,":[73],"fee":[76],"customers.":[78],"service":[81,87],"APIs":[82],"hosted":[83],"third-party":[85,307],"maps":[86,179,308],"providers":[88],"often":[90],"an":[91],"inaccurate":[92],"estimate":[93],"two-wheeler":[95],"India.":[99],"historical":[101,227],"GPS":[102],"trajectories":[103],"DPs":[105],"can":[107],"be":[108],"alternate":[111],"sources":[112],"estimates":[115,131,218],"noisy":[118,165,199],"due":[119,138],"inherent":[121],"noise":[122,189],"Global":[124],"Position":[125],"System":[126],"(GPS)":[127],"signal":[128],"reception.":[129],"from":[132,207],"OpenStreetMap":[133],"(OSM)":[134],"error-prone":[137],"crowd-sourced":[140],"nature":[141],"map.":[144],"In":[145],"this":[146],"paper,":[147],"we":[148],"adopt":[149],"machine":[151],"learning":[152],"(ML)":[153],"based":[154,245],"approach":[155],"predict":[157],"location":[160],"pairs":[161],"de-noising":[163,182],"sources,":[167],"viz.":[168],"OSM":[170,247,295],"distance,":[171,174],"trajectory":[173],"third":[177],"party":[178],"distance.":[180],"achieved":[184],"averaging":[186],"out":[187],"non-singular":[192],"equivalence":[193,204],"classes":[194,205],"estimates,":[201],"where":[202],"arise":[206],"defining":[208],"\"match\"":[210],"relation":[211],"distances.":[214],"de-noised":[216],"target":[223],"variables":[224],"their":[226],"versions":[228],"features":[232],"random":[235],"forest":[236],"model.":[237],"We":[238],"further":[239],"design":[240],"usability":[243],"criterion":[244],"on":[246,318],"that":[249],"offers":[250],"reasonable":[252],"trade-off":[253],"Mean":[256],"Absolute":[257],"Error":[258],"(MAE)":[259],"model":[262,273],"coverage,":[263],"i.e.,":[264],"fraction":[266],"DP":[268],"trips":[269],"prediction":[274],"our":[278,319],"downstream":[279],"systems.":[280],"proposed":[282],"system":[283],"achieves":[284],"21.88":[286],"%":[287,299,313],"reduction":[288,300],"MAE":[291,302],"compared":[293,304],"47.40":[298],"with":[310],"52.44":[312],"trip-wise":[314],"coverage":[315],"evaluated":[317],"internal":[320],"dataset.":[321]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205395153","counts_by_year":[],"updated_date":"2025-02-26T04:24:26.925903","created_date":"2022-01-25"}