{"id":"https://openalex.org/W3216513468","doi":"https://doi.org/10.1145/3487572.3487599","title":"Synerise at RecSys 2021: Twitter user engagement prediction with a fast neural model","display_name":"Synerise at RecSys 2021: Twitter user engagement prediction with a fast neural model","publication_year":2021,"publication_date":"2021-10-01","ids":{"openalex":"https://openalex.org/W3216513468","doi":"https://doi.org/10.1145/3487572.3487599","mag":"3216513468"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3487572.3487599","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3487572.3487599","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3487572.3487599","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037220915","display_name":"Micha\u0142 Daniluk","orcid":null},"institutions":[{"id":"https://openalex.org/I108403487","display_name":"Warsaw University of Technology","ror":"https://ror.org/00y0xnp53","country_code":"PL","type":"education","lineage":["https://openalex.org/I108403487"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Michal Daniluk","raw_affiliation_strings":["Synerise, Poland and Warsaw University of Technology, Poland"],"affiliations":[{"raw_affiliation_string":"Synerise, Poland and Warsaw University of Technology, Poland","institution_ids":["https://openalex.org/I108403487"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000389931","display_name":"Jacek D\u0105browski","orcid":"https://orcid.org/0000-0003-3392-0690"},"institutions":[],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Jacek Dabrowski","raw_affiliation_strings":["Synerise, Poland"],"affiliations":[{"raw_affiliation_string":"Synerise, Poland","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037137601","display_name":"Barbara Rychalska","orcid":"https://orcid.org/0000-0003-2336-5347"},"institutions":[{"id":"https://openalex.org/I108403487","display_name":"Warsaw University of Technology","ror":"https://ror.org/00y0xnp53","country_code":"PL","type":"education","lineage":["https://openalex.org/I108403487"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Barbara Rychalska","raw_affiliation_strings":["Synerise, Poland and Warsaw University of Technology, Poland"],"affiliations":[{"raw_affiliation_string":"Synerise, Poland and Warsaw University of Technology, Poland","institution_ids":["https://openalex.org/I108403487"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083483223","display_name":"Konrad Go\u0142uchowski","orcid":null},"institutions":[],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Konrad Goluchowski","raw_affiliation_strings":["Synerise, Poland"],"affiliations":[{"raw_affiliation_string":"Synerise, Poland","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.542,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.636268,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"15","last_page":"21"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11478","display_name":"Caching and Content Delivery","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11478","display_name":"Caching and Content Delivery","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.47453964}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8400465},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.51839477},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4854789},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.47453964},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4702674},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.45459512},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.451737},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42601377},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.41538048},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.37584966},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3467884},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.19211671},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3487572.3487599","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3487572.3487599","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2109.12985","pdf_url":"http://arxiv.org/pdf/2109.12985","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3487572.3487599","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3487572.3487599","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W2912325709","https://openalex.org/W2978017171","https://openalex.org/W2979826702","https://openalex.org/W3088097218","https://openalex.org/W3088420542","https://openalex.org/W3215358907","https://openalex.org/W4255075222"],"related_works":["https://openalex.org/W4387022695","https://openalex.org/W4298287631","https://openalex.org/W4225394202","https://openalex.org/W3176411177","https://openalex.org/W3128807919","https://openalex.org/W3036642985","https://openalex.org/W3032952384","https://openalex.org/W2964335273","https://openalex.org/W2953061907","https://openalex.org/W1847088711"],"abstract_inverted_index":{"In":[0,149,165],"this":[1],"paper":[2],"we":[3,151],"present":[4],"our":[5,132,190],"2nd":[6],"place":[7],"solution":[8],"to":[9,20,76,102,167,169],"ACM":[10],"RecSys":[11],"2021":[12],"Challenge":[13,201,206],"organized":[14],"by":[15,81],"Twitter.":[16],"The":[17,70,184],"challenge":[18,71],"aims":[19],"predict":[21],"user":[22,65,156],"engagement":[23,63,98],"for":[24,95],"a":[25,77,105,163,178,187],"set":[26,34],"of":[27,35,45,55,162,189],"tweets,":[28],"offering":[29],"an":[30],"exceptionally":[31],"large":[32],"data":[33,38,50],"1":[36],"billion":[37],"points":[39],"sampled":[40],"from":[41],"over":[42],"four":[43],"weeks":[44],"real":[46,78],"Twitter":[47],"interactions.":[48],"Each":[49],"point":[51],"contains":[52],"multiple":[53],"sources":[54],"information,":[56],"such":[57,123],"as":[58,124],"tweet":[59,68,97],"text":[60],"along":[61],"with":[62,109,121],"features,":[64,66],"and":[67,142,160,203],"features.":[69],"brings":[72],"the":[73,87,91,125,170,174,210],"problem":[74],"close":[75],"production":[79],"environment":[80],"introducing":[82],"strict":[83,171],"latency":[84,172],"constraints":[85],"in":[86,196],"model":[88,114,176],"evaluation":[89],"phase:":[90],"average":[92],"inference":[93],"time":[94],"single":[96,106],"prediction":[99],"is":[100,177,186],"limited":[101],"6ms":[103],"on":[104,116,137],"CPU":[107],"core":[108],"64GB":[110],"memory.":[111],"Our":[112],"proposed":[113],"relies":[115],"extensive":[117],"feature":[118],"engineering":[119],"performed":[120],"methods":[122,192],"Efficient":[126],"Manifold":[127],"Density":[128],"Estimator":[129],"(EMDE)":[130],"-":[131],"previously":[133],"introduced":[134],"algorithm":[135],"based":[136],"Locality":[138],"Sensitive":[139],"Hashing":[140],"method,":[141],"novel":[143],"Fourier":[144],"Feature":[145],"Encoding,":[146],"among":[147],"others.":[148],"total,":[150],"create":[152],"numerous":[153],"features":[154],"describing":[155],"twitter":[157],"account":[158],"status":[159],"content":[161],"tweet.":[164],"order":[166],"adhere":[168],"constraints,":[173],"underlying":[175],"simple":[179],"residual":[180],"feed-forward":[181],"neural":[182],"network.":[183],"system":[185],"variation":[188],"previous":[191],"which":[193],"proved":[194],"successful":[195],"KDD":[197],"Cup":[198],"2021,":[199,202],"WSDM":[200],"SIGIR":[204],"eCom":[205],"2020.":[207],"We":[208],"release":[209],"source":[211],"code":[212],"at:":[213],"https://github.com/Synerise/recsys-challenge-2021.":[214]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3216513468","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-04T07:15:07.321793","created_date":"2021-12-06"}