{"id":"https://openalex.org/W4224325312","doi":"https://doi.org/10.1145/3485447.3512091","title":"Learning the Markov Order of Paths in Graphs","display_name":"Learning the Markov Order of Paths in Graphs","publication_year":2022,"publication_date":"2022-04-25","ids":{"openalex":"https://openalex.org/W4224325312","doi":"https://doi.org/10.1145/3485447.3512091"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3485447.3512091","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3485447.3512091","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3485447.3512091","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066712447","display_name":"Luka V. Petrovi\u0107","orcid":"https://orcid.org/0000-0003-2703-1977"},"institutions":[{"id":"https://openalex.org/I202697423","display_name":"University of Zurich","ror":"https://ror.org/02crff812","country_code":"CH","type":"education","lineage":["https://openalex.org/I202697423"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Luka V. Petrovic","raw_affiliation_strings":["Data Analytics Group, Department of Informatics, University of Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Data Analytics Group, Department of Informatics, University of Zurich, Switzerland","institution_ids":["https://openalex.org/I202697423"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082884831","display_name":"Ingo Scholtes","orcid":"https://orcid.org/0000-0003-2253-0216"},"institutions":[{"id":"https://openalex.org/I202697423","display_name":"University of Zurich","ror":"https://ror.org/02crff812","country_code":"CH","type":"education","lineage":["https://openalex.org/I202697423"]},{"id":"https://openalex.org/I25974101","display_name":"University of W\u00fcrzburg","ror":"https://ror.org/00fbnyb24","country_code":"DE","type":"education","lineage":["https://openalex.org/I25974101"]}],"countries":["CH","DE"],"is_corresponding":false,"raw_author_name":"Ingo Scholtes","raw_affiliation_strings":["Chair of Machine Learning for Complex Networks, Julius-Maximilians-Universit\u00e4t W\u00fcrzburg, Germany and Data Analytics Group, Department of Informatics, University of Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Chair of Machine Learning for Complex Networks, Julius-Maximilians-Universit\u00e4t W\u00fcrzburg, Germany and Data Analytics Group, Department of Informatics, University of Zurich, Switzerland","institution_ids":["https://openalex.org/I202697423","https://openalex.org/I25974101"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.956,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.792129,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"1559","last_page":"1569"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.991,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.991,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9757,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.6968751},{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.56553423},{"id":"https://openalex.org/keywords/bayesian-information-criterion","display_name":"Bayesian information criterion","score":0.41689727}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70266277},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.6968751},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.6096392},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.57970595},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.56553423},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5328404},{"id":"https://openalex.org/C163836022","wikidata":"https://www.wikidata.org/wiki/Q6771326","display_name":"Markov model","level":3,"score":0.51722157},{"id":"https://openalex.org/C71983512","wikidata":"https://www.wikidata.org/wiki/Q7915687","display_name":"Variable-order Bayesian network","level":4,"score":0.5142824},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49649316},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.49029186},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.44274026},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.4390419},{"id":"https://openalex.org/C168136583","wikidata":"https://www.wikidata.org/wiki/Q1988242","display_name":"Bayesian information criterion","level":2,"score":0.41689727},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37198776},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3504672},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.3381702},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.2663996},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20141792},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13897851},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.094904274}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3485447.3512091","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3485447.3512091","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3485447.3512091","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3485447.3512091","source":{"id":"https://openalex.org/S4363608783","display_name":"Proceedings of the ACM Web Conference 2022","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1253479792","https://openalex.org/W1560285440","https://openalex.org/W1592378919","https://openalex.org/W1607198972","https://openalex.org/W1969543361","https://openalex.org/W1975914563","https://openalex.org/W1977212489","https://openalex.org/W1989449092","https://openalex.org/W1994707058","https://openalex.org/W2020621555","https://openalex.org/W2023815876","https://openalex.org/W2028329703","https://openalex.org/W2053807426","https://openalex.org/W2056859449","https://openalex.org/W2068502909","https://openalex.org/W2085667778","https://openalex.org/W2087221762","https://openalex.org/W2087686387","https://openalex.org/W2093124207","https://openalex.org/W2131126403","https://openalex.org/W2140937627","https://openalex.org/W2147781067","https://openalex.org/W2157547297","https://openalex.org/W2167000629","https://openalex.org/W2171279286","https://openalex.org/W2889218107","https://openalex.org/W2964184962","https://openalex.org/W3008427318","https://openalex.org/W3125781181","https://openalex.org/W3134924583","https://openalex.org/W4211177544","https://openalex.org/W4242650025","https://openalex.org/W4294327662","https://openalex.org/W4379510236"],"related_works":["https://openalex.org/W643788828","https://openalex.org/W4309448762","https://openalex.org/W4211221765","https://openalex.org/W2767997510","https://openalex.org/W2592745513","https://openalex.org/W2391701421","https://openalex.org/W2383034311","https://openalex.org/W2353852789","https://openalex.org/W201565394","https://openalex.org/W1700460858"],"abstract_inverted_index":{"We":[0,108],"address":[1],"the":[2,6,51,70,82,105,127,136,171,186,198,205],"problem":[3],"of":[4,20,104,131,189,201],"learning":[5,65],"Markov":[7,39,72,129],"order":[8,40,73,130],"in":[9,15,151,175,183,210],"categorical":[10,152],"sequences":[11,19],"that":[12,47,67,111,116,155,203],"represent":[13],"paths":[14],"a":[16,30,55,63,77,112,118,123],"network,":[17],"i.e.,":[18],"variable":[21],"lengths":[22],"where":[23],"transitions":[24],"between":[25],"states":[26],"are":[27,156],"constrained":[28],"to":[29,125,158],"known":[31,160],"graph.":[32],"Such":[33],"data":[34,90,147,154,165,169,182],"pose":[35],"challenges":[36],"for":[37,50,59,138,146,197,207],"standard":[38],"detection":[41],"methods":[42,92],"and":[43,97],"demand":[44],"modeling":[45,57],"techniques":[46],"explicitly":[48],"account":[49],"graph":[52],"constraint.":[53],"Adopting":[54],"multi-order":[56],"framework":[58],"paths,":[60,132],"we":[61],"develop":[62],"Bayesian":[64,140],"technique":[66],"(i)":[68],"detects":[69],"correct":[71],"more":[74],"reliably":[75],"than":[76,91],"competing":[78],"method":[79,115,143],"based":[80],"on":[81,170],"likelihood":[83,119],"ratio":[84,120],"test,":[85],"(ii)":[86],"requires":[87],"considerably":[88],"less":[89],"using":[93],"AIC":[94],"or":[95,166,180],"BIC,":[96],"(iii)":[98],"is":[99,134,144,194],"robust":[100],"against":[101],"partial":[102],"knowledge":[103],"underlying":[106],"constraints.":[107],"further":[109],"show":[110],"recently":[113],"published":[114],"uses":[117],"test":[121],"exhibits":[122],"tendency":[124],"overfit":[126],"true":[128],"which":[133],"not":[135],"case":[137],"our":[139,192],"technique.":[141],"Our":[142],"important":[145],"scientists":[148],"analyzing":[149],"patterns":[150],"sequence":[153],"subject":[157],"(partially)":[159],"constraints,":[161],"e.g.":[162],"click":[163],"stream":[164],"other":[167],"behavioral":[168],"Web,":[172],"information":[173],"propagation":[174],"social":[176],"networks,":[177],"mobility":[178],"trajectories,":[179],"pathway":[181],"bioinformatics.":[184],"Addressing":[185],"key":[187],"challenge":[188],"model":[190],"selection,":[191],"work":[193],"also":[195],"relevant":[196],"growing":[199],"body":[200],"research":[202],"emphasizes":[204],"need":[206],"higher-order":[208],"models":[209],"network":[211],"analysis.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4224325312","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-08T07:49:26.617452","created_date":"2022-04-26"}