{"id":"https://openalex.org/W3214817442","doi":"https://doi.org/10.1145/3481646.3481651","title":"An Approach to Objective Optimization of High-dimensional Data","display_name":"An Approach to Objective Optimization of High-dimensional Data","publication_year":2021,"publication_date":"2021-08-13","ids":{"openalex":"https://openalex.org/W3214817442","doi":"https://doi.org/10.1145/3481646.3481651","mag":"3214817442"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3481646.3481651","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029773698","display_name":"Chenhan Zhai","orcid":"https://orcid.org/0000-0003-4943-2528"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenhan ZHAI","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046558187","display_name":"Wanghu Chen","orcid":"https://orcid.org/0000-0002-9233-7609"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wanghu CHEN","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041580238","display_name":"Meilin Zhou","orcid":null},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Meilin ZHOU","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041718923","display_name":"Pengbo Lv","orcid":null},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengbo LV","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063316795","display_name":"Yan Sun","orcid":"https://orcid.org/0000-0002-0839-1769"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan SUN","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101877790","display_name":"Ali Arshad","orcid":"https://orcid.org/0000-0003-1842-8040"},"institutions":[{"id":"https://openalex.org/I68986083","display_name":"Northwest Normal University","ror":"https://ror.org/00gx3j908","country_code":"CN","type":"funder","lineage":["https://openalex.org/I68986083"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ali Arshad","raw_affiliation_strings":["Northwest Normal University, China"],"affiliations":[{"raw_affiliation_string":"Northwest Normal University, China","institution_ids":["https://openalex.org/I68986083"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":56},"biblio":{"volume":null,"issue":null,"first_page":"26","last_page":"33"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9782,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.48826265},{"id":"https://openalex.org/keywords/optimization-algorithm","display_name":"Optimization algorithm","score":0.4414374}],"concepts":[{"id":"https://openalex.org/C126980161","wikidata":"https://www.wikidata.org/wiki/Q863783","display_name":"Simulated annealing","level":2,"score":0.8344399},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.6703984},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.6409574},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.62784916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60951144},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5373807},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.5078843},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.48826265},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.44850907},{"id":"https://openalex.org/C2987595161","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Optimization algorithm","level":2,"score":0.4414374},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41469005},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21725997},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.18155709},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.11741683},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.07919738},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3481646.3481651","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.41,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61967013"}],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W147612390","https://openalex.org/W1715975119","https://openalex.org/W1717440967","https://openalex.org/W1968527334","https://openalex.org/W1977556410","https://openalex.org/W1992419399","https://openalex.org/W1992775825","https://openalex.org/W2037773845","https://openalex.org/W2116754301","https://openalex.org/W2140190241","https://openalex.org/W2140405352","https://openalex.org/W2166992393","https://openalex.org/W3019641368","https://openalex.org/W4229697989"],"related_works":["https://openalex.org/W4366280654","https://openalex.org/W4362706668","https://openalex.org/W4231621013","https://openalex.org/W4206903459","https://openalex.org/W3171021120","https://openalex.org/W3160167280","https://openalex.org/W3020853991","https://openalex.org/W3008318776","https://openalex.org/W2895097035","https://openalex.org/W2754816816"],"abstract_inverted_index":{"Objective":[0],"optimization":[1,43,61],"is":[2,20,31,48,75],"crucial":[3],"in":[4,66,151],"industrial":[5],"production.":[6],"However,":[7],"for":[8],"high-dimensional":[9,46],"data,":[10],"it":[11],"often":[12],"needs":[13],"to":[14,24,34,40,115],"take":[15],"a":[16,70,148],"long":[17],"time":[18,143],"and":[19,54,83,103,105,112,124,133,146],"full":[21],"of":[22,45,154,163],"challenges":[23],"get":[25],"an":[26,38],"approximate":[27],"optimal":[28,156],"solution":[29,157,164],"which":[30],"very":[32],"close":[33],"the":[35,60,72,78,92,97,106,119,138,155,161],"optimum.":[36],"Therefore,":[37],"approach":[39,74,94,140],"solve":[41],"objective":[42],"problems":[44],"data":[47],"proposed":[49,73,93,139],"by":[50,101,110],"combining":[51],"gradient":[52,87,129],"descent":[53,130],"clustering,":[55],"with":[56,77,86,127],"simulated":[57,80,121],"annealing.":[58],"Considering":[59],"problem":[62],"underneath":[63],"coal":[64],"blending":[65],"electric":[67],"field":[68],"as":[69,158,160],"background,":[71],"compared":[76,114],"traditional":[79,120],"annealing":[81,122],"algorithm":[82,123],"that":[84,91,116,125,137],"combined":[85,126],"descent.":[88],"Experiments":[89,132],"shows":[90],"can":[95,141],"improve":[96],"average":[98],"matching":[99,108],"degree":[100,109],"1.94%":[102],"2.14%,":[104],"best":[107],"0.08%":[111],"0.09%,":[113],"based":[117],"on":[118],"superimposed":[128],"respectively.":[131],"analyses":[134],"also":[135],"show":[136],"reduce":[142],"consumption":[144],"largely,":[145],"has":[147],"great":[149],"improvement":[150],"stability,":[152],"accuracy":[153],"well":[159],"efficiency":[162],"searching.":[165]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3214817442","counts_by_year":[],"updated_date":"2025-03-26T02:16:08.142371","created_date":"2021-12-06"}