{"id":"https://openalex.org/W4284689329","doi":"https://doi.org/10.1145/3477495.3532032","title":"Offline Evaluation of Ranked Lists using Parametric Estimation of Propensities","display_name":"Offline Evaluation of Ranked Lists using Parametric Estimation of Propensities","publication_year":2022,"publication_date":"2022-07-06","ids":{"openalex":"https://openalex.org/W4284689329","doi":"https://doi.org/10.1145/3477495.3532032"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3477495.3532032","pdf_url":null,"source":{"id":"https://openalex.org/S4363608773","display_name":"Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2206.02470","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022536276","display_name":"Vishwa Vinay","orcid":"https://orcid.org/0000-0002-4043-9953"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vishwa Vinay","raw_affiliation_strings":["Adobe Research, Bangalore, India"],"affiliations":[{"raw_affiliation_string":"Adobe Research, Bangalore, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088985144","display_name":"Manoj Kilaru","orcid":null},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"funder","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Manoj Kilaru","raw_affiliation_strings":["University of California, San Diego, CA, USA"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego, CA, USA","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5063845534","display_name":"David Arbour","orcid":"https://orcid.org/0000-0002-9932-7657"},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David Arbour","raw_affiliation_strings":["Adobe Research, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"Adobe Research, San Jose, CA, USA","institution_ids":["https://openalex.org/I1306409833"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":"622","last_page":"632"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10845","display_name":"Advanced Causal Inference Techniques","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11161","display_name":"Consumer Market Behavior and Pricing","score":0.9797,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10991","display_name":"Game Theory and Voting Systems","score":0.9724,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to Rank","score":0.7272137},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.5956997},{"id":"https://openalex.org/keywords/fraction","display_name":"Fraction (chemistry)","score":0.54960686},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.4403327}],"concepts":[{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.7876167},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7805426},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.7272137},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.5956997},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.56151915},{"id":"https://openalex.org/C149629883","wikidata":"https://www.wikidata.org/wiki/Q660926","display_name":"Fraction (chemistry)","level":2,"score":0.54960686},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.49219075},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48079008},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.44333705},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.4403327},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43879014},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.4153661},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38985026},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38544852},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.112636775},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09102553},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3477495.3532032","pdf_url":null,"source":{"id":"https://openalex.org/S4363608773","display_name":"Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.02470","pdf_url":"https://arxiv.org/pdf/2206.02470","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.02470","pdf_url":"https://arxiv.org/pdf/2206.02470","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1992549066","https://openalex.org/W2003473029","https://openalex.org/W2022995284","https://openalex.org/W2059001985","https://openalex.org/W2091158010","https://openalex.org/W2105256943","https://openalex.org/W2109244020","https://openalex.org/W2112508839","https://openalex.org/W2124108136","https://openalex.org/W2130076000","https://openalex.org/W2143331230","https://openalex.org/W2150291618","https://openalex.org/W2165959378","https://openalex.org/W2340526403","https://openalex.org/W2342632098","https://openalex.org/W2463677609","https://openalex.org/W2464171116","https://openalex.org/W2507134384","https://openalex.org/W2610935556","https://openalex.org/W2740692915","https://openalex.org/W2769473018","https://openalex.org/W2798460079","https://openalex.org/W2890291106","https://openalex.org/W2905569957","https://openalex.org/W2911802745","https://openalex.org/W2955421345","https://openalex.org/W2962733633","https://openalex.org/W3021683593","https://openalex.org/W3034471540","https://openalex.org/W3099096815","https://openalex.org/W3099420497","https://openalex.org/W3101148092","https://openalex.org/W3105712174","https://openalex.org/W3135277963","https://openalex.org/W4205480697","https://openalex.org/W4213113302"],"related_works":["https://openalex.org/W4390446658","https://openalex.org/W4385565564","https://openalex.org/W3160516639","https://openalex.org/W3127142483","https://openalex.org/W2971071571","https://openalex.org/W2922169395","https://openalex.org/W2898073868","https://openalex.org/W2798835721","https://openalex.org/W2387658907","https://openalex.org/W2138488530"],"abstract_inverted_index":{"Search":[0],"engines":[1],"and":[2,57],"recommendation":[3],"systems":[4],"attempt":[5],"to":[6,16,29,47,67,94,124,167],"continually":[7],"improve":[8],"the":[9,12,20,24,44,69,72,78,81,91,97,105,118,137,164,172],"quality":[10],"of":[11,36,64,71,80,113,139],"experience":[13],"they":[14],"afford":[15],"their":[17,65],"users.":[18],"Refining":[19],"ranker":[21,93,107],"that":[22],"produces":[23],"lists":[25,102],"displayed":[26],"in":[27,129],"response":[28],"user":[30,98],"requests":[31],"is":[32,42],"an":[33],"important":[34],"component":[35],"this":[37,133],"process.":[38],"A":[39,111],"common":[40],"practice":[41],"for":[43,126,142],"service":[45],"providers":[46],"make":[48],"changes":[49,83],"(e.g.":[50],"new":[51,106,165],"ranking":[52,55],"features,":[53],"different":[54],"models)":[56],"A/B":[58],"test":[59],"them":[60],"on":[61,90,100],"a":[62],"fraction":[63],"users":[66],"establish":[68],"value":[70],"change.":[73],"An":[74],"alternative":[75],"approach":[76],"estimates":[77,141],"effectiveness":[79],"proposed":[82],"offline,":[84],"utilising":[85],"previously":[86],"collected":[87],"clickthrough":[88],"data":[89],"old":[92],"posit":[95],"what":[96],"behaviour":[99],"ranked":[101],"produced":[103],"by":[104,146],"would":[108],"have":[109],"been.":[110],"majority":[112],"offline":[114,158],"evaluation":[115,159],"approaches":[116],"invoke":[117],"well":[119,148],"studied":[120],"inverse":[121],"propensity":[122],"weighting":[123],"adjust":[125],"biases":[127],"inherent":[128],"logged":[130,173],"data.":[131],"In":[132],"paper,":[134],"we":[135,154],"propose":[136],"use":[138],"parametric":[140],"these":[143],"propensities.":[144],"Specifically,":[145],"leveraging":[147],"known":[149],"learning-to-rank":[150],"methods":[151],"as":[152],"subroutines,":[153],"show":[155],"how":[156],"accurate":[157],"can":[160],"be":[161,168],"achieved":[162],"when":[163],"rankings":[166],"evaluated":[169],"differ":[170],"from":[171],"ones.":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4284689329","counts_by_year":[],"updated_date":"2025-03-03T10:21:17.036215","created_date":"2022-07-08"}